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1 INTRODUCTION 

 INTRODUCTION 

The state of the art in aeronautical engineering has been continually accelerated by the development 
of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these 

methods have provided a fundamental understanding of physical phenomena and enabled designers to 
predict and analyze critical characteristics of new vehicles, including the capability to control or modify 
unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely power-
ful digital computer hardware  and software has had a major impact on design capabilities and procedures. 
Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and 
macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. 
Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed 
within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in 
the vehicle development process permits the most important segment of operations—the human pilot—to 
make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applica-
tions of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and 
safety of new aerospace vehicles. 

Arguably, one of the more viable and valuable design tools since the advent of flight has been testing of 
subscale models. As used herein, the term “model” refers to a physical article used in experimental analy-
ses of a larger full-scale vehicle. The reader is probably aware that many other forms of mathematical and 
computer-based models are also used in aerospace design; however, such topics are beyond the intended 
scope of this document. Model aircraft have always been a source of fascination, inspiration, and recreation 
for humans since the earliest days of flight. Within the scientific community, Leonardo da Vinci, George 
Cayley, and the Wright brothers are examples of early aviation pioneers who frequently used models during 
their scientific efforts to understand and develop flying machines. Progress in the technology associated 
with model testing in worldwide applications has firmly established model aircraft as a key element in new 
aerospace research and development programs. Models are now routinely used in many applications and 
roles, including aerodynamic data gathering in wind tunnel investigations for the analysis of full-scale 
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aircraft designs, proof-of-concept demonstrators for radical aeronautical concepts, and problem-solving 
exercises for vehicles already in production. The most critical contributions of aerospace models are to 
provide confidence and risk reduction for new designs and to enhance the safety and efficiency of existing 
configurations. 

NASA  and its predecessor, the NACA, have been leading  contributors to the technology of aerospace 
model testing for over 80 years. Virtually every technical discipline studied by the NACA  and NASA  for 
application to aerospace vehicles has used unique and specialized models, including the fields of aerody-
namics, structures and materials, propulsion, and flight controls. These  models  have  been  used  for  thou-
sands  of  investigations  in  a  myriad  of  specialty  areas  as  far  ranging  as  aerodynamic  and  hydrodynamic  drag 
reduction,  high-lift  systems,  loads  because  of  atmospheric  gusts  and  landing  impact,  aircraft  ditching,  buffet-
ing,  propulsive  efficiency,  configuration  integration,  icing  effects, aeroelasticity, and assessments of stability 
and control. Within these specialty areas, models can be further classified as “static” models or “dynamic” 
models. 

In  this  representative  conventional  static  wind  tunnel  test,  a  2.7-percent  scale  model  of  the  
Boeing  777  airplane  is  mounted  to  a  sting  support  system  for  testing  at  transonic  speeds  in  the  
National  Transonic  Facility  at  the  NASA  Langley  Research  Center.  The  model  contains  exten-
sive  instrumentation  and  an  internally  mounted  electronic  strain-gauge  balance  for  measure-
ments  of  aerodynamic  data.  In  static  testing,  data  are  taken  at  specific  fixed  combinations  of 
airspeed,  model  configuration,  and  model  attitude  as  controlled  by  the  test  team. 

Static wind tunnel models of aircraft and spacecraft are designed to extract high-quality, detailed aero-
dynamic data for analysis of their full-scale counterparts at specified flight conditions. Static tests are typi-
cally conducted  with the model fixed to an internally mounted, force-measuring device known as an electri-
cal strain-gauge, which is in 
turn  mounted  to  a  sting  sup-
port  system.  The  orientation  of 
the  model  and  its  support  sys-
tem  relative  to  the  wind  tunnel 
flow  is  controlled  by  the  inves-
tigator  as  required  for  speci-
fied  aerodynamic  test  condi-
tions.  The  focus  of  the  static 
experiment  is  on  obtaining 
detailed  aerodynamic  mea-
surements  for  combinations  of 
airspeed,  model  attitudes,  and 
configuration  variables  such 
as  wing-flap  or  control  surface 
deflections.  Extensive  instru-
mentation  is  used  to  measure  
critical aerodynamic parame-
ters, which may include 
forces and moments, static 
and dynamic pressures act-
ing on the surfaces of the 
model, the state of the bound-
ary layer, and visualization of 
flows on and off the surfaces 



              
                    
                    
                   

Dynamic free-flight model tests of the X-29 advanced technology demonstrator were conducted in the NASA Langley Full-Scale Tunnel 
to determine the configuration’s dynamic stability and control characteristics. The photograph shows the model flying at a high angle of 
attack while researchers assess its behavior. Note the large nose-down deflection of the canard surface, an indication of the inherent 
static instability of the configuration. Active controls using data from an angle-of-attack sensor on the nose boom provided artificial stability. 

of the model. Design challenges for this class of model include providing sufficient structural strength, espe-
cially to accommodate the large loads encountered for high airspeeds, high  angles  of  attack,  or  sideslip; 
protecting the model and its data sources from aerothermal loads; providing robust and reliable instrumen-
tation within the relatively small airframe of the model; and designing the model components and test tech-
niques to permit timely wind tunnel operations for acquisition of data with minimum “dead time” required for 
reconfiguration of the model  or support system. An additional design issue is the required accuracy of 
model lines and deciding which airplane features need to be replicated for the model. The results of static 
tests are used in analyses or as inputs for subsequent investigations that may involve other testing tech-
niques and additional methods. Note that static tests do not require dynamic motions of the model or free-
flight capability. 

Dynamic free-flight model investigations extend the objectives of conventional static tests to include the 
effects of vehicle motions. The primary objective of free-flight testing is to assess the inherent flight motions 
of a configuration and its response to control inputs. In accomplishing this task, the same models used for 
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Dynamic models have been used for over 50 years by the NACA and NASA to predict the spin entry and spin recovery behavior of highly 
maneuverable military aircraft. A model of the F-15 fighter is shown mounted on a launching rig attached to a helicopter in preparation for 
an unpowered “drop” test, during which the unpowered model will be controlled by ground-based pilots in deliberate attempts to promote 
spins. As a result of extensive correlation of results with subsequent full-scale aircraft results, NASA has validated its testing procedures. 

free-flight tests can frequently be used in conventional static tests as well as unique wind tunnel test tech-
niques to determine the effects of vehicle motions on critical aerodynamic parameters. The results of free-
flight model tests can be readily observed by the motions of the model in response to forcing functions by 
the atmosphere  or control deflections by pilots. Dynamic tests focus on critical characteristics such as sta-
bility, controllability, and safety during flight within and outside the conventional flight envelope. The most 
critical applications of free-flight models include evaluations of radical or unconventional designs for which 
no experience base exists, and the analysis of aircraft behavior for flight conditions that are not easily stud-
ied with static testing techniques or advanced computational methods because of complex aerodynamic 
phenomena that cannot yet be modeled. Examples of such conditions include flight at high angles of attack, 
stalls, and spins in which separated flows, nonlinear aerodynamic behavior, and large dynamic motions are 
typically encountered. 

Even a cursory examination of the breadth of the NACA  and NASA  studies to date in static and dynamic 
model testing reveals an overwhelming wealth of experiences and technology far beyond the intended 



scope of this monograph. The objective of the material presented here is to provide the reader with an 
overview of some of the more interesting free-flight model testing techniques that have been developed and 
the role that the testing has played in fundamental and applied research, as well as in support of the devel-
opment of some of the Nation’s more important civil and military aerospace programs. The material also 
includes discussions of the development of the specialized facilities and equipment required for dynamic 
model tests. 

These efforts originated over 80 years 
ago at the first NACA  laboratory, known 
as the Langley Memorial Aeronautical 
Laboratory, at Hampton, VA. Most of the 
principles and concepts introduced by 
the NACA have been continually updated 
and are now fully incorporated  within the 
testing capabilities of the NASA  Langley 
Research Center. In addition to the 
developmental efforts and existing oper-
ational capability at Langley, this paper 
will also discuss dynamic free-flight 
model studies at the NASA  Dryden Flight 
Research Center at Edwards Air Force 
Base, CA, the NASA  Ames Research 
Center at Mountain View, CA, and the 
NASA  Wallops  Flight Facility at Wallops 
Island, VA. Within these NASA  research 
organizations, years of experience using 
subscale free-flight models have been 
accumulated and correlated wherever 
possible with results of full-scale aircraft 
flight tests to establish the accuracy and 
limits of model testing. 

Free-flying  dynamically  scaled  models  have  evolved  from  simple  unpowered 
silk-span-covered  balsa  replicas  to  highly  sophisticated  miniature  aircraft  with 
advanced  materials,  propulsion  units,  control  systems,  and  instrumentation.  This 
model  of  the  X-48B  blended  wing-body  configuration  is  typical  of  the  current  state 
of  the  art  in  dynamic  model  technology. 

The material selected for review covers two major types of dynamic model tests referred to as  
dynamic free-flight tests and dynamic force tests. Free-flight tests involve testing techniques in which pow-
ered or unpowered models are flown without appreciable restraint in wind tunnels or at outdoor test ranges. 
The models may be uncontrolled, or controlled by remotely located human pilots. Dynamic free-flight mod-
els are designed and constructed in compliance with required scaling laws to ensure that dynamic motions 
are similar between the model and its full-scale counterpart. A  brief review of the scaling procedures for 
dynamic models is included for background. Dynamic force tests are special wind tunnel test techniques 
developed by the NACA  and NASA  to measure the effects of vehicle motions on critical aerodynamic data 
for flight conditions during normal operations and situations beyond the normal flight envelope, such as 
spins and poststall gyrations. Several unique test apparatuses have been implemented to permit dynamic 
force tests in several wind tunnel facilities. 
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The organization of the material for each of the discussion topics includes a brief background on the 
objectives and applications of dynamic models in that area of interest, the unique results obtained for  
specific programs, and how such data are used in the research and development process. 

The subject matter first reviews the special geometric- and mass-scaling requirements for free-flight 
dynamic models. Limitations of the free-flight techniques are also reviewed. The discussion then presents 
a review  of the history of the development of free-flight techniques by the NACA  and NASA, including dis-
cussions of the physical characteristics of key facilities, the models used, and the approach to testing. The 
major portion of the book focuses on the applications of the techniques to generic configurations for general 
research as well as to specific aircraft and spacecraft configurations. Important lessons learned are also 
reviewed. A  brief review of the special dynamic force tests that usually accompany free-flight tests is pro-
vided, and the document concludes with the author’s perspective on potential future opportunities and 
requirements in free-flight model testing. 

The  contents  presented  herein  are  intended  for  a  wide  range  of  interested  readers,  including  industry  teams 
within  the  civil  and  military  aviation  communities,  high  school  and  college  students,  designers  and  builders  of 
homebuilt  experimental  aircraft,  aviation  enthusiasts,  and  historians.  To  provide  the  most  benefit  for  this  broad 
audience,  the  technical  language  used  has  been  intentionally  kept  at  an  appropriate  level,  and  equations  and 
technical  jargon  have  been  minimized.  Extensive  references  are  provided  for  those  interested  in  obtaining  a 
deeper  knowledge  of  subject  matter  presented  in  each  major  section. 

During his career as a NASA  researcher and manager, the author was honored to have made many pre-
sentations to the international  aviation community and public on NASA’s applications of dynamically scaled 
free-flight models in its aerospace research programs. During those occasions, the audience was always 
interested and intensely inquisitive as to the methods used to conduct meaningful model flight tests in 
research activities. On many occasions, the audience recommended that a publication on NASA’s experi-
ences with the free-flight models be prepared. It is sincerely hoped that the contents of this publication 
provides information that will be useful in clarifying this very valuable and historic technical capability. 
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CHAPTER 1:
�

BACKGROUND 

Objectives 

Dynamically  scaled  free-flying  models  are  especially  well  suited  for  investigations  of  the  flight 
dynamics  of  aircraft  and  spacecraft  configurations.  Flight  dynamics  focuses  on  the  behavior  of  

vehicles  in  flight  and  the  causal  factors  that  influence  the  motions  exhibited  in  response  to  atmospheric 
disturbances  or  pilot  inputs.  The  science  includes  aspects  of  applied  aerodynamics,  static  and  dynamic 
stability  and  control,  flight  control  systems,  and  handling  qualities.  Applications  of  the  free-flight  test  
capability  in  flight  dynamics  have  ranged  from  fundamental  studies—such  as  investigations  of  the  effects 
of  wing  sweep  on  dynamic  stability  and  control—to  detailed  evaluations  of  the  flight  behavior  of  specific 
configurations—such  as  the  spin  resistance  and  spin  recovery  characteristics  of  highly  maneuverable 
military  aircraft.  During  these  investigations,  the  test  crew  assesses  the  general  controllability  of  the 
model  and  inherent  problems  such  as  uncontrollable  oscillations  or  failure  to  recover  from  spins.  The 
crewmembers  also  evaluate  the  effects  of  artificial  stability  augmentation  systems,  airframe  modifica-
tions,  and  auxiliary  devices,  such  as  emergency  spin  recovery  parachutes.  Time  histories  of  motion  
parameters—including  model  attitudes,  angular  rates,  linear  accelerations,  angles  of  attack  and  sideslip, 
airspeed,  and  control  positions—are  recorded  for  analysis  and  correlation  with  full-scale  results  and  
other  analysis  methods.  Aerodynamic  data  for  the  free-flight  model  can  be  extracted  from  the  model 
flight  results,  and  most  models  can  be  used  in  conventional  static  wind  tunnel  tests  as  well  as  
specialized  dynamic  force  tests.  The  results  of  free  flight  testing  are  extremely  valuable  during  aerospace 
vehicle  development  programs  because  potentially  undesirable  or  even  catastrophic  behavior  can  be 
identified  at  an  early  design  stage,  permitting  modifications  to  be  incorporated  into  the  design  for  
satisfactory  characteristics.  In  addition,  the  data  provide  awareness  and  guidance  to  test  and  evaluation 
organizations  of  potential  problems  in  preparation  for  and  during  subsequent  flight  tests  of  the  full-scale 
vehicle.  The  payoff  is  especially  high  for  unconventional  or  radical  configurations  with  no  existing  
experience  base. 
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Predictions  obtained  from  dynamic  model  tests  are  routinely  correlated  with  results  from  aircraft  flight-testing.  In  a  classic  NASA  study  of  spin-
ning  characteristics  of  general-aviation  configurations,  tests  were  conducted  with,  right  to  left:  a  spin  tunnel  model,  a  radio-controlled  model, 
and  the  full-scale  aircraft.  Langley  test  pilot  Jim  Patton,  center,  and  researchers  Jim  Bowman,  left,  and  Todd  Burk  pose  with  the  test  articles. 

Role of Free-Flight Testing 

Free-flight models are complementary to other tools used in aeronautical engineering. In the absence of 
adverse scale effects, the aerodynamic characteristics of the models have been found to agree very well 
with data obtained from other types of wind tunnel tests and theoretical analyses. By providing insight as to 



 

the impact of aerodynamics on vehicle dynamics, the free-flight results help build the necessary under-
standing of critical aerodynamic parameters and the impact of modifications to resolve problems. The  
ability to conduct free-flight tests and aerodynamic measurements with the same model is a powerful 
advantage for the testing technique. When coupled with more sophisticated static wind tunnel tests, com-
putational fluid dynamics methods, and piloted simulator technology, these tests are extremely informative. 
Finally, the very visual results of free-flight tests are impressive, whether they demonstrate to critics and 
naysayers that radical and unconventional designs can be flown or identify a critical flight problem for a  
new configuration. 

As might be expected, conducting and interpreting the results of free-flying model tests requires expertise 
gained by continual feedback  and correlation with fight results obtained with many full-scale aircraft. Model 
construction techniques, instrumentation, and control technologies are constantly being improved. Facili-
ties and equipment must be updated, and radical unconventional aircraft configurations may require modi-
fications to the facilities and testing techniques. NASA  staff members have accumulated extensive exper-
tise and experience with the technology of free-flight models, and as a result, the aerospace community 
seeks them out for consultation, advice, and cooperative studies. The physical facilities and human 
resources acquired and nurtured by the Agency in the science and art of free-flight testing has made 
extremely valuable contributions to civil and military programs. 

Later sections of the document will provide overviews of the conception and development of free-flight 
testing techniques by NACA  and NASA  researchers as well as selected contributions made to specific 
aerospace programs. Before these topics are discussed, however, a review of the specific scaling proce-
dures required for dynamic free-flight models will provide additional background and understanding of the 
model construction details and the testing procedure. In addition, observations regarding the constraints 
and limitations involved in free-flight model testing are presented. 

Principles of Dynamic Scaling 

To obtain valid results from free-flight model test programs, the model must be designed and constructed 
in a specific manner that will ensure that its motions are similar to motions that would be exhibited by the 
full-scale article. Dynamically scaled free-flight models are not only geometrically scaled replicas; they are 
specially designed to ensure motion similitude between the subscale model and the full-scale subject. 
When a geometrically similar model of an aircraft reacts to external forces and moves in such a manner that 
the relative positions of its components are geometrically similar to those of a full-scale airplane after a 
proportional period of time, the model and airplane are referred to as “dynamically similar,” bringing about 
a condition known as dynamic similitude. When properly constructed and tested, the flight path and angular 
displacements of the model and vehicle will be geometrically identical, although the time required for  
selected motions of each will be different and require the application of mathematical factors for interpreta-
tion of the results. 

The requirements for scaling may be visualized with the help of the accompanying graphic, which shows 
the interaction between aerodynamic and inertial moments for an aircraft in a steady spin. The sketches 
indicate the physical mechanisms that determine the balance of moments that occur about the pitch axis 
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Sketch  illustrating  the  balance  of  nose-down  aerodynamic  pitching  moments  and  nose-up  inertial  pitching  moments  during  a  steady  spin. 
The  balance  of  these  moments  will  largely  determine  the  spin  rate  and  angle  of  attack  of  the  spin. 

during the spin. The sketch on the left shows that, at spin attitudes, an airplane experiences very high 
angles  of  attack,  which  usually  results  in  a  nose-down  aerodynamic  pitching  moment.  This  nose-down  moment  is 
balanced  by  the  inertial  pitching  moment  depicted  in  the  sketch  at  the  right.  In  the  right-hand  sketch,  the  mass 
distribution  of  the  airplane  is  represented  by  a  system  of  weights  along  the  fuselage  and  wings.  As  the  weights 
rotate  about  the  spin  axis,  centrifugal  forces  acting  perpendicular  to  the  spin  axis  create  a  nose-up  inertial  pitching 
moment,  attempting  to  align  the  fuselage  perpendicular  to  the  spin  axis.  For  the  steady  developed  spin,  the  nose-
up  inertial  moment  balances  the  nose-down  aerodynamic  moment. 

It is readily apparent that the balance of aerodynamic and inertial parameters must be similar between 
the model and full-scale aircraft if the spin rate and angle of attack are to be dynamically reproduced. If, for 
example, the mass distribution of the model results in inertial nose-up loads that are too low  compared  with 
scaled  airplane  loads,  the  aerodynamics  of  the  model  will  be  grossly  out  of  balance  and  possibly  dominate  the 
conditions  of  motion.  On  the  other  hand,  if  the  aerodynamic  moments  are  insufficient,  the  inertial  moments  will 
unrealistically  determine  the  motions.  Obviously,  predictions  of  full-scale  characteristics  based  on  these  condi-
tions  would  be  in  error. 

In addition to geometric scale requirements for the model (such as wingspan, length, and wing area), 
scale ratios of force, mass, and time must also be maintained between the model and full-scale article for 
dynamic similitude.1  The fundamental theories and derivation of scaling factors for similitude for free-flight 
models are based on the broad science known as dimensional analysis. The derivations of dynamic-model 
scale factors from dimensional analysis were developed during the earliest days of flight and will not be 
repeated here. Rather, the following discussion provides an overview of the critical scaling laws that must 
be maintained for rigid (nonaeroelastic) free-flight models in incompressible and compressible flow fields.2 
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Rigid-Body Dynamic Models 

The simplest type of dynamic free-flight model is known as the rigid-body model. As implied by the  
name, a rigid-body model does not attempt to simulate flexible structural properties such as aeroelastic 
bending modes or flutter properties of the full-scale article. However, even these simple models must be 
scaled according to mandatory relationships in each of the primary units of mass, length, and time to pro-
vide flight motions and test results directly applicable to the corresponding full-scale aircraft. Units of model 
length such as wingspan are, of course, scaled from geometric ratios between the model and full-scale 
vehicle, units of model mass (weight) are scaled from those of the full-scale vehicle on the basis of a param-
eter known as the relative density factor (measure of model mass density relative to an  
atmospheric sample), and model time is scaled on the basis of a parameter known as the Froude number 
(ratio of inertial to gravitational effects). From these relationships, other physical quantities such as  
linear velocity and angular velocity can be derived. For most applications, the model and full-scale  
aircraft are tested in the same gravitational field, and therefore linear accelerations are equal between 
model and full scale. To conduct meaningful tests using free-flight models, the scaling procedures must  
be followed during the construction, testing, and data analysis of a dynamic model. Simply scaling  
geometric dimensional characteristics without regard for other parameters can produce completely  
misleading results. 

Incompressible Flow 

Many of the free-flight dynamic model tests conducted by the NACA  and NASA  in research efforts have 
involved investigations of rigid models for conditions in which Mach number and compressibility were not 
major concerns. For these incompressible flow conditions, the required scale factors for dynamic models 
are given in the following table: 

SCALe FACTOR 

Linear dimension n 

Relative density (m/ρl3) 1 

Froude number (V2/lg) 1 

Angle of attack 1 

Linear acceleration 1 

Weight, mass n3/σ 

Moment of inertia n5/σ 

Linear velocity n1/2 

Angular velocity 1/ n1/2 

Time n1/2 

Reynolds number (Vl/ν) n1.5ν/ν0 

Scale factors for rigid dynamic models tested at sea level. Multiply full-scale values by the indicated scale factors to determine model 

values, where n is the ratio of model-to-full-scale dimensions, σ is the ratio of air density to that at sea level (ρ/ρ0), and ν is the value 

of kinematic viscosity. 
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Certain characteristics of rigid-body dynamic models are apparent upon examination of the factors  
given in the table. The required parameters of relative density and Froude number are maintained equal 
between model and aircraft (scale factor of 1), as are linear accelerations such as gravitational accelera-
tion. The model and aircraft will exhibit similar flight behavior for the same angles of attack and dynamic 
motions. For example, following a disturbance at a specific angle of attack, the ensuing damped oscillations 
will be identical in terms of the number of cycles required to damp the motions for the model and aircraft. 

As shown in the below table, however, other motion parameters vary markedly between model and  
aircraft. For example, for a 1/9-scale model (n=1/9), the linear velocities of the model (flight speeds) will only 
be 1/3 of those of the aircraft, but the angular velocities exhibited by the model in roll, pitch, and yaw will be 
3 times faster than those of the airplane. Because the model’s angular motions are so much faster  
than those of the airplane, the models may be difficult to control. Many dynamic model testing  
techniques developed by NASA  meet this challenge by using more than one human pilot to share the  
piloting tasks. 

Another important result of dynamic scaling is that large differences in the magnitude of the nondimen-
sional aerodynamic parameter known as Reynolds number  (ratio of inertial to viscous forces within the fluid 
medium) will occur. In other words, as a result of dynamic scaling, the model is tested at a much lower value 
of Reynolds number than that of the full-scale airplane for comparable flight conditions. A  1/9-scale dynamic 
model is typically tested at a value of Reynolds number that is only 1/27 that of the airplane for sea level 
conditions. As will be discussed, this deficiency in the magnitude of Reynolds number between model and 
aircraft can sometimes result in significant differences in aerodynamic behavior and lead to erroneous con-
clusions for certain aircraft configurations. 

An examination of design specifications for dynamically scaled models of a typical high-performance 
military fighter and a representative general-aviation aircraft provides an appreciation for the impact of 
dynamic scaling on the physical properties of the models: 

FIgHTeR MODeL (N=1/9)                                  AIRpLANe MODeL 

geometric scale  1.0 1/9 

Wingspan 42.8 ft 4.8 ft 

Weight (a)  55,000 lbs 75.5 lbs 

Weight (b)  55,000 lbs 201.9 lbs 

geNeRAL-AVIATION MODeL (N=1/5)               AIRpLANe MODeL 

geometric scale  1.0 1/5 

Wingspan 36 ft 7.2 ft 

Weight (c)  2,500 lbs 20 lbs 

Weight (d)  2,500 lbs 27 lbs 

Design results for models of representative rigid-body, general-aviation, and fighter models. Notes for weight data: (a) 

denotes full-scale airplane at sea level and model at sea level, (b) full-scale airplane at 30,000 ft and model at sea level, (c) full-scale 

airplane at sea level and model at sea level, and (d) full-scale airplane at 10,000 ft and model at sea level. 
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These  data  vividly  demonstrate  that  dynamically  scaled  free-flight  models  weigh  considerably  more 
than  would  conventional  hobbyist-type,  radio-controlled  models  of  the  same  geometric  scale,  and  that 
the  task  of  using  a  model  at  sea  level  to  simulate  the  flight  of  a  full-scale  aircraft  at  altitude  significantly 
increases  the  design  weight  (and  therefore  flight  speed)  of  the  model.  The  scaling  relationships  result  in 
challenges  for  the  dynamic-model  designer,  including  ensuring  adequate  structural  strength  to  
withstand  operational  loads  and  crashes;  providing  adequate  onboard  space  for  instrumentation,  recov-
ery  parachutes,  and  control  actuators  while  staying  within  weight  constraints;  and  matching  flight  speeds 
with  those  of  wind  tunnel  facilities.  Typically,  a  large  number  of  preliminary  trade  studies  are  conducted 
to  arrive  at  a  feasible  model  scale  for  the  altitude  to  be  simulated  in  the  flight  tests.  In  some  cases,  the 
final  analysis  may  conclude  that  the  weight/payload/strength  compatibility  issues  cannot  be  met  for  the 
type  of  testing  under  consideration. 

In  addition  to  addressing  weight  considerations,  the  designer  must  also  meet  scaling  laws  to  
simulate  the  mass  distribution  properties  (moments  of  inertia)  expected  for  the  full-scale  aircraft.  
Using  data  or  estimates  of  the  weight  and  center  of  gravity  of  various  model  components  and  equip-
ment,  calculations  are  initially  made  of  mass  moments  of  inertia  about  each  of  the  three  aircraft  axes  to 
determine  inertias  in  pitch,  roll,  and  yaw  for  the  model.  After  the  model  is  fabricated,  experimental  meth-
ods  are  used  to  measure  the  moments  of  inertia  of  the  model,  with  all  systems  installed  to  ensure  that 
the  values  obtained  approach  the  values  prescribed  by  the  scaling  requirements.  The  experimental 
methods  used  to  measure  inertias  are  based  on  observations  of  the  times  required  for  periodic  oscilla-
tions  of  the  model  when  forced  by  a  mechanical  spring  apparatus,  or  pendulum-type  motions  of  the 
model  mounted  to  suspension  lines.  Using  theoretical  relationships  for  the  motions  and  period  of  the  
oscillation,  the  inertias  can  be  calculated.  The  inertia  requirements  and  distribution  of  mass  in  the  model 
can  be  a  very  severe  design  challenge,  especially  for  powered  models  with  heavy  engines  displaced 
along  the  wing.3 

While  the  model  satisfied  geometrical,  mass,  and  weight  scaling  constraints,  the  designer  may  
also  have  to  provide  an  appropriate  propulsion  system.  propulsion  techniques  used  by  NASA  in  its  
flying  models  have  included  unpowered  gliders,  conventional  internal-combustion  engines,  tip-driven 
fans  powered  by  compressed  air,  compressed-air  thrust  tubes  and  ejectors,  turbojets,  and  electric-
powered  turbofans.  The  use  of  power  systems  and  the  degree  of  sophistication  involved  depends  on  
the  nature  of  the  tests  and  the  type  of  data  desired.  For  example,  free-flight  investigations  of  
spinning  and  spin  recovery  are  conducted  with  unpowered  models,  whereas  free-flight  studies  of  pow-
ered-lift  vertical  take-off  and  landing  (VTOL)  aircraft  require  relatively  complex  simulation  of  the  
large  effects  of  engine  exhaust  on  the  aerodynamic  behavior  of  a  model.  Model  propulsion  units  used  to 
simulate  current-day  turbofan  engines  are  especially  complex. 

Another  challenge  for  the  designer  of  a  dynamic  free-flight  model  is  the  selection  of  control  actuators 
for  aerodynamic  control  surfaces.  The  use  of  a  proportional  control  system  in  which  a  deflection  of  the 
control  stick  results  in  a  proportional  deflection  of  the  control  surface  may  be  suitable  for  precision  con-
trol  of  larger  models.  However,  because  small,  dynamically  scaled  models  exhibit  rapid  angular  motions, 
the  use  of  rapid  full-on,  full-off  “flicker”  type  controls  may  be  required. 
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Compressible Flow 

Critical aerodynamic parameters for aerospace vehicles may change markedly when compressibility 
effects are experienced as flight speeds increase. Mach number, the ratio of aircraft velocity to the 
velocity of sound in the compressible fluid medium in which the aircraft is flying, is required to be 
the same for aircraft and model for similitude when compressibility effects dominate. Although the 
Mach number based on the speed of the complete aircraft may be low, in some cases, significant 
compressibility effects may be present on components of the vehicle. For example, flow over the upper 
surface of a wing with a thick high-lift airfoil at high angles of attack may experience Mach 
numbers approaching 1, even though the aircraft’s flight speed may be as low as Mach 0.3. As the 
local flow approaches transonic Mach numbers, severe flow separation can occur because of 
interactions of shock waves formed on the wing and the wing’s boundary layer flow. In turn, flow 
separation can cause undesirable dynamic motions such as wing drop or instability in pitch. When 
Mach number effects are expected to dominate, another set of scaling laws must be used for 
compressible-flow conditions: 

SCALe FACTOR 

Linear dimension n 

Relative density (m/ρl3) 1 

Mach number 1 

Froude number (V2/lg) 1 

Angle of attack Dependent on Froude scaling 

Linear acceleration 1 

Weight, mass                                                                                                    n3/σ 

Moment of inertia n5/σ 

Linear velocity n1/2 

Angular velocity 1/n1/2 

Time                                                                                                                 n1/2 

Reynolds number (Vl/ν) n1.5ν/ν0 

Scale factors for rigid dynamic models when matching Mach number. Multiply full-scale values by scale factors to determine model 

values, where n is the ratio of model-to-full-scale dimensions, σ is the ratio of air density to that at sea level (ρ/ρ0), and ν is the value 

of kinematic viscosity. 

To maintain equivalent Mach numbers between model and aircraft, the previously discussed  
similitude requirements for Froude number (V2/lg) can no longer be met without an unfeasible change in the 
gravitational field. One result of this deficiency is that the model must be flown at a different angle of attack 
than the full-scale vehicle. The model will be at a lower angle of attack than the full-scale aircraft while flying 
at the same Mach number. With this discrepancy in mind, NASA’s applications and experiences with free-
flying models for dynamic motion studies have included incompressible and compressible conditions with 
properly scaled models.4 
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Limitations and Interpretation of Results 

Unfortunately, all the similitude requirements previously discussed cannot be duplicated in every respect 
during model testing. Use of the dynamic model test techniques therefore requires an awareness of the 
limitations inherent to the techniques and an accumulation of experience in the art of extrapolating results 
to conditions that cannot be directly simulated. In addition, results should not be extended beyond their 
intended areas of application. 

Unquestionably, the most significant issue involved in free-flight testing is the discrepancy in values of 
Reynolds number between the model and full-scale vehicle.5 Most of the critical flight issues studied by 
NASA  in dynamic free-flight model tests involve partially or fully separated flow conditions, which may be 
significantly affected by Reynolds number. Reynolds number effects are generally configuration dependent 
and may be very complex. 

One of the more common Reynolds number effects 
of concern involves its potential effects on the variation 
of the magnitude and angle of attack for maximum lift. 
Shown in the accompanying figure are lift data mea-
sured in wind tunnel tests of a general-aviation model 
at values of Reynolds number representative of those 
used in dynamic free-flight model tests and Reynolds 
numbers representative of full-scale flight. 

Effect  of  Reynolds  number  on  lift  of  a  general-aviation  model  as 

	 measured  in  wind  tunnel  tests.  Data  were  obtained  at  relatively 
low  values  of  Reynolds  number  corresponding  to  model  free-
flight  tests  and  high  values  representative  of  full-scale  flight 
tests.  The  full-scale  data  show  a  markedly  higher  magnitude 
and  angle  of  attack  for  maximum  lift.  Primarily  a  function  of 
wing  geometric  features,  such  scale  effects  can  lead  to  errone-
ous  model  results. 

The data show significant increases in the magni-
tude and angle of attack for maximum lift as Reynolds 
number increases from model conditions to the full-
scale value. Such results can significantly affect the 
prediction of flight characteristics of the airplane near 
and above stall. For example, the trends shown by the 
data might significantly influence critical characteris-
tics, such as spin resistance. When an aircraft is flown 
near the angle  of maximum lift, any disturbance that 
results in one wing dropping will subject that wing panel 
to a local increase in angle of attack. If the variation of 
lift with angle of attack is negative (as it normally is 
immediately beyond maximum lift), the down-going wing will experience a loss of lift, further increasing the 
tendency for the wing to drop and resulting in a pro-spin propelling phenomenon known as wing autorota-
tion. If the configuration has large Reynolds number effects, such as those shown in the sketch, the exten-
sion of the angle of attack for maximum lift at full-scale conditions may delay the spin angle of attack for the 
airplane to a higher value. As a consequence, the model might exhibit a steeper spin from which recovery 
might be relatively easy, whereas the full-scale airplane might exhibit a more dangerous spin at higher 
angles of attack and unsatisfactory spin recovery. 
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Finally, a consideration of the primary areas of application of free-flight dynamic model testing is in order 
to provide a cautionary note regarding extrapolating free-flight results to other issues that are best analyzed 
using other engineering tools. In particular, caution is emphasized when attempting to predict pilot handling 
quality evaluations by using remotely piloted free-flight models. NASA’s experience has shown that remotely 
controlled models do not provide suitable physical cues for the pilot when trying to quantitatively rate flying 
qualities. Instead, these studies are best conducted with the pilot situated in the simulator cockpit, with 
appropriate visual and motion cues provided at full-scale values of time. Investigations of handling charac-
teristics for precision maneuvers are much more suitably  conducted using fixed or moving-base piloted 
simulators. 

With NASA’s awareness and cautious respect for scale effects, its success in applying dynamic free-flight 
models for evaluations of conventional and radical aerospace configurations over the years has been 
extremely good. Thousands of configurations have been tested to date using several techniques, and the 
results of many of the NASA  investigations have included correlation with subsequent flight tests of full-
scale vehicles. Subsequent sections provide overviews of some of the success stories involved in this 
research as well as notable lessons learned. 
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CHAPTER 2: 

HISTORICAL DEVELOPMENT 
BY THE NACA AND NASA 

Early pioneers of aeronautical engineering were overwhelmed with the complexity of technologies 
required for the design and analysis of successful aircraft configurations. Long before the advent of 

high-speed digital computers and other sophisticated methods routinely used today, experimental methods 
in the areas of aerodynamics, structures and materials, propulsion, and the dynamics of flight were the 
primary tools of the design community. Subscale models provided basic understandings of fundamental 
phenomena as well as data for correlation with analytical studies or full-scale flight results. The following 
discussion provides highlights  of the development of testing techniques directed at the study of flight dynam-
ics, with an emphasis on dynamic stability and control. The development of ground-based facilities for 
dynamic model tests will be covered first, followed by a review of outdoor testing techniques. 

At the Langley  Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics, 
applications of aircraft models for conventional wind tunnel testing in the 1920s were quickly followed by 
applications of specialized free-flight models for a broad variety of research investigations involving the 
prediction of stability and control characteristics, dynamic motions during controlled and uncontrolled flight, 
structural responses to atmospheric gusts and turbulence, and landing loads. As the merits of dynamic 
model testing became established and appreciated, specialized facilities and testing techniques were 
quickly advocated, developed, and put into operational status. With a dedicated and brilliant young staff of 
researchers, Langley’s management provided the encouragement and resources required for the develop-
ment of research facilities that would ultimately serve the interests of the Nation far beyond those that were 
initially envisioned. As a result of decades of continual commitment to the technical subject, Langley’s expe-
riences have been the focal point for NASA’s contributions using dynamic free-flight models.1  Critical con-
tributions and accomplishments have also been made at the Dryden and Ames Research Centers, as will 
be discussed. 
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Spin Research Facilities 

One of the first life-threatening problems of heavier-than-air flying machines demanded early attention 
from designers and pilots of the day—the dreaded tailspin.  The international aviation community knew very 
little about the critical factors that influenced the spin behavior of aircraft or the relative effectiveness of dif-
ferent piloting methods to terminate the spin and recover to conventional flight. Langley researchers were 
the first international group to use dynamically scaled models for spin research.2  They initially evaluated the 
use of catapult-launched models with wingspans of about 3 feet in an Army airship hangar about 105 feet 
high at Langley  Field. After a series of free-flight studies of spin entries, the Langley staff concluded that the 
catapult technique was fundamentally limited and prone to operational problems. The approach was very 
time-consuming and resulted in frequent damage to the fragile models, and the abbreviated flight time did 
not permit the fully developed spin to be entered before the model impacted the recovery net. In addition, 
critics questioned the validity of the subscale model tests because of potential aerodynamic scale effects. 

Meanwhile, British researchers at the Royal Aircraft Establishment (R.A.E.) had been inspired by the 
NACA  efforts and began their own assessments of a catapult technique. Arriving at similar conclusions as 
their American peers regarding the limitations of the catapult technique, they developed a new free-drop 
technique in a large building.3  To permit more time to study developed spins before impact, they constructed 
a special model-launching mechanism that used a threaded vertical rod to launch models with prespin 
motions from the top of a balloon shed. After the balloon shed was demolished during a planned expansion 
of facilities at Farnborough, U.K., the R.A.E. built a small vertical wind tunnel with a 2-foot test section to 
determine if a free-spinning model test technique would be feasible. The exploratory tests were a huge suc-
cess and led to the construction of a 12-foot-diameter vertical spin tunnel at Farnborough, which was put 
into operation in 1932.4 

At Langley, efforts to promote an understanding of the aerodynamics of the spin had resulted in the con-
struction of a 5-Foot Vertical Tunnel in the late 1920s to provide for measurements of the aerodynamic 
loads on aircraft models during simulated spinning motions.5  Airflow in this early tunnel was vertically down-
ward to simplify the balancing of mass loadings during rotary motions, and the model was rigidly mounted 
to a rotating balance assembly driven by an electric motor. Aerodynamic data from the tests were then used 
in theoretical analyses of potential spin modes that might be exhibited by the full-scale airplane. A  consider-
able amount of valuable data was gathered in the 5-Foot Vertical Tunnel, but the advantages of free- 
spinning test techniques were obvious. Aware of the success of the British free-spinning tunnel at Farnbor-
ough, Langley then proceeded to design and construct a similar 15-foot free-spinning tunnel in 1934 that 
permitted researchers to observe the spin and recovery motions of small free-flying balsa models.6  Opera-
tions began in 1935 as the first operational vertical free-spinning tunnel in the United States. The designer, 
Charles H. Zimmerman, had been a key member of the staff of the 5-Foot Vertical Tunnel. Zimmerman was 
a brilliant researcher and innovative tinkerer, who developed several dynamic model testing techniques and 
radical new airplane concepts. 

The airflow in the 15-Foot Spin Tunnel was vertically upward to simulate the downward velocity of an 
aircraft during spins. At the beginning of a typical test, the model was mounted on a launching spindle at the 
end of a long wooden rod held by a tunnel technician. A  tunnel operator increased the airspeed in the 
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vertical  tunnel  so  that  the  air  forces  on  the  model  equaled  its  weight.  At  this  point,  the  model  automatically 
disengaged  from  the  spindle  and  continued  to  float  as  the  airspeed  was  continually  adjusted  to  maintain  the 
model’s  position  at  eye  level  in  the  test  section.  The  model’s  control  surfaces  were  moved  from  pro-spin  set-
tings  to  predetermined  anti-spin  settings  by  a  clockwork  mechanism,  and  the  rapidity  of  recovery  from  the  spin 
was  noted.  After  the  test  was  completed,  the  tunnel  airspeed  was  decreased,  and  the  model  was  allowed  to 
descend  and  settle  into  a  large  net  at  the  bottom  of  the  test  section.  The  model  was  then  recovered  with  a 
long-handled  clamp  and  prepared  for  the  next  test.  After  several  years  of  operation,  the  launching  spindle  was 
discontinued,  and  the  model  was  merely  launched  by  hand  into  the  airstream  with  an  initial  spinning  motion. 

Free-spinning  test  underway  in  the  Langley  15-Foot  Spin  Tunnel.  The  researcher  on  the  left  has  placed  the  model  and  its  launch-
ing  spindle  in  the  vertically  rising  airstream  with  pro-spin  settings  on  the  control  surfaces.  Motion-picture  records  were  made  after 
the  model  reached  a  steady  spinning  condition.  Spin  recovery  controls  were  actuated  by  a  clockwork  mechanism  within  the  model.  
Measurements  were  made  of  the  rate  of  spin,  attitude  of  the  model,  and  the  number  of  turns  required  for  recovery  from  the  spin. 

The Langley 20-Foot Spin Tunnel 

In 1941, Langley replaced the 15-Foot Spin Tunnel with a new 20-foot tunnel, which has been in continual 
use to the present day. The facility features are similar to its predecessor, but it is capable of much higher 

CHAPTER 2: HISTORICAL DEVELOPMENT 19 



20 MODELING FLIGHT  

                    
                     
                    
                   

      

Cross-sectional view of the Spin Tunnel shows the closed-return tunnel configuration, the location of the drive fan at the top of 
the facility, and the locations of safety nets above and below the test section to restrain and retrieve models. The tunnel operator 
uses a rapid-response airspeed control to maintain the position of the model within the field of view of data acquisition cameras. 
The Spin Tunnel became operational in 1941 and has conducted spin and recovery studies for nearly 600 aircraft designs and 
low-speed dynamic stability tests of numerous spacecraft. 



  

Spin  tunnel  test  of  a  dynamically  scaled  model  of  the  F-22  fighter.  The  model  has  been  hand-launched  with  a  spinning  motion  into 
a  vertical  airstream  controlled  by  the  tunnel  operator  on  the  left.  The  spin  recovery  controls  will  be  applied  using  the  hobbyist-type, 
radio-controlled  transmitter  held  by  the  technician  on  the  right. 

speeds for tests of larger, heavier models of current-day aircraft. The free-flying unpowered aircraft models 
are hand-launched to evaluate spinning and spin recovery behavior, tumbling resistance, and recovery 
from other out-of-control situations. The tunnel is a closed-throat, annular return wind tunnel with a 12-sided 
test section 20 feet across by 25 feet in length. The test section airspeed can be varied from 0 to approxi-
mately 85 feet per second. Airflow in the test section is controlled by a 3-bladed fan powered by a 400- 
horsepower direct current motor in the top of the facility, and the airspeed control system is designed to 
permit rapid changes in fan speed to enable precise location of the model in the test section.7 

CHAPTER 2: HISTORICAL DEVELOPMENT 21 



22 MODELING FLIGHT  

The models for free-spinning tests in the Langley 20-Foot Spin Tunnel are hand launched with a spinning 
motion into the vertically rising airstream and a tunnel operator controls the airspeed to stabilize the spin-
ning model in view of observers. Data measured include attitude, spin rate, and control positions. For many 
years, data acquisition was accomplished by laborious manual indexing of motion-picture records taken 
during the test sequence. Over time, the acquisition system has become much more efficient and sophisti-
cated. Today’s system is based on a model space positioning system that uses retro-reflective targets 
attached on the model for determining model position.8  Spin recovery controls in early operations were 
actuated at the operator’s discretion rather than the preset clockwork mechanisms of the previous tunnel. 
Copper coils placed around the periphery of the tunnel set up a magnetic field in the tunnel when energized, 
and this magnetic field actuated a magnetic device in the model to operate the control surfaces. Today, the 
control surfaces are actuated using premium off-the-shelf radio-controlled hobby gear. 

This versatile testing facility is also used to determine the size and effectiveness of emergency spin 
recovery parachute systems for flight-test aircraft by deploying various parachute configurations from the 
spinning model. In addition, unconventional maneuvers such as uncontrollable nose-over-tail gyrations 
known as “tumbling” can be investigated. In support of NASA’s space exploration programs, the tunnel has 
also been used to evaluate the stability of vertically descending configurations such as parachute/capsule 
systems. In addition to its capabilities for free-flight testing, the Spin Tunnel is equipped with special test 
equipment to permit measurement of aerodynamic forces, moments, and surface pressures during simu-
lated spinning motions, as will be discussed in a later section. In recent years, the capability of obtaining 
such measurements during combined rotary and oscillatory motions has also been added to the research 
equipment used in the facility. The Spin Tunnel has supported the development of nearly all U.S. military 
fighter and attack aircraft, trainers, and bombers during its 68-year history, with over 600 projects to date. 

After the introduction of vertical spin tunnels for aeronautical research in England and the United States, 
widespread developments of similar facilities occurred worldwide, including free-spinning tunnels in France, 
Canada, Australia, Germany, Italy, Russia, China, and Japan. 

Wind Tunnel Free-Flight Research Facilities 

After the successful introduction of Zimmerman’s 15-Foot Spin Tunnel in 1935, Langley researchers 
extended their visions to include a wind tunnel method to study the dynamic stability and control character-
istics of a free-flying aircraft model in conventional flight. This concept consisted of placing an unpowered, 
remotely controlled model within the test section of a “tilted” wind tunnel, increasing the airspeed until the 
aerodynamic lift of the model supported the weight of the model, and then observing the model’s stability 
and response to control inputs as it flew in gliding flight. Zimmerman first conceived and fabricated a 5-foot-
diameter proof-of-concept free-flight wind tunnel that was suspended from a yoke, which permitted it to be 
rotated about a horizontal axis. The closed-throat, open-return atmospheric tunnel was capable of being 
tilted from the horizontal position to a maximum nose-down orientation of 25 degrees. No provision was 
made for climb angles, because no test of powered models in the tunnel was contemplated. 

The tilt angle of the 5-Foot Free-Flight Tunnel and the airspeed produced by a fan at the rear of the test 
section were controlled by a tunnel operator at the side of the test section. An evaluation pilot at the rear of 



  

Free-flight  tests  of  a  model  of  the  Brewster  Buffalo  airplane  in  the  5-Foot  Free-Flight  Tunnel.  The  researcher  on  the  left  controls 
the  tilt  angle  and  airspeed  of  the  yoke-mounted  tunnel,  while  the  evaluation  pilot  on  the  right  provides  control  inputs  via  light  
flexible  cables  from  his  control  box  to  the  model. 

the tunnel provided inputs to the model’s controls via fine wires that were kept slack during the flight. Mean-
while, the tunnel operator adjusted the airspeed and tunnel angles so that the model remained relatively 
stationary near the center of the tunnel during a test. By coordinating their tasks, the two researchers were 
able to assess the dynamic stability and control characteristics of the test model. The information obtained 
in the test was qualitative and consisted primarily of ratings for various stability control characteristics based 
on observations of a pilot and tunnel operator. 
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The models tested in the 5-foot tunnel were quite small (wingspan approximately 2 feet) with very light 
construction (balsa shell or balsa framework covered with paper). Small electromagnetic actuators were 
used to deflect the control surfaces, and power to operate the actuators was supplied through light flexible 
wires that trailed freely from the model to the floor of the tunnel. As a result of the relatively small size of the 
dynamically scaled model, the motions of the models were very fast and difficult to control. 

In early testing, the research team lacked the coordination  and experience required for satisfactory stud-
ies, and inadvertent crashes of the fragile models curtailed many research programs when the facility 
began operations in 1937. In support of the development of the free-flight capability, Langley’s instrumenta-
tion experts developed an automatic light-beam-control device that stabilized the models and greatly 
improved the training of research pilots and tunnel operators. 

The Langley 12-Foot Free-Flight Tunnel 

Only  a  few  research  projects  were  con-
ducted  in  the  5-Foot  Free-Flight  Tunnel,  but 
they  were  quite  successful  and  stimulated 
interest  in  a  more  capable  research  facility. 
Charles  Zimmerman  already  had  his  design  
in  mind  for  an  even  larger,  more  capable  tun-
nel.  A  12-foot  free-flight  tunnel  was  soon  con-
structed  and  placed  into  operation  in  1939. 
The  new  tunnel  had  an  octagonal  test  section 
that  was  15  feet  in  length,  and  the  length  of  the 
tilting  portion  of  the  tunnel  was  32  feet.  The 
Langley  12-Foot  Free-Flight  Tunnel  was 
housed  in  a  60-foot-diameter  sphere  so  
that  the  return  passage  for  the  air  would  be 
essentially  the  same  for  all  tunnel  tilt  angles. 
Powered  models  were  under  consideration,  
so  the  tilt  angle  of  the  test  section  ranged  
from  40-degree  glide  to  15-degree  climb  condi-
tions.  Three  operators  were  used  during  tests. 
Two  of  the  researchers  were  positioned  at  the 
side  of  the  test  section  to  control  tunnel  angle  
and  airspeed.  One  of  the  operators  also  
controlled  propulsion  power  to  the  model  for 
power-on  flight  tests.  The  pilot  was  enclosed  
in  a  viewing  area  at  the  rear  of  the  test  section 
and  controlled  the  model  with  inputs  to  
two  small  control  sticks,  which  activated  
small  electromagnetic  control  servos  in  the 
model.9 

Sketch  of  the  12-Foot  Free-Flight  Tunnel  and  its  adjacent  office  build-
ing.  The  60-foot-diameter  sphere  housing  the  facility  provided  a  con-
tinuous  return  passage  for  the  closed-return  tunnel  airstream  as  the 
tunnel  pivoted  for  free-flight  tests. 

Free-flight  test  of  a  swept-forward  wing,  tailless  fighter  design  known 
as  the  Air  Material  Command  MCD-387-A  in  the  Langley  12-Foot 
Free-Flight  Tunnel.  The  evaluation  pilot  is  visible  in  the  enclosure  at 
the  lower  left,  while  the  two  tunnel  operators  controlling  airspeed  and 
tunnel  tilt  angle  are  at  the  right. 



  

Models designed for tests in the 12-foot tunnel had wingspans of about 3 feet and were constructed of 
solid balsa wings and hollow balsa fuselages in early tests, but later tests used models of built-up construc-
tion of spruce and other materials. Tests of simplified research models used aluminum-alloy fuselage booms 
on many occasions. The control actuators used by the flight models were spring-centered electromagnetic 
mechanisms that were later succeeded by solenoid-operated air valves. One of the major lessons learned 
in early free-flight experiences with the smaller dynamically scaled models was that full-on/full-off “bang-
bang” controls were much more satisfactory than conventional proportional-type controllers. It was found 
that the rapid angular motions of the small models required  large control effectiveness to maintain adequate 
control while studies were made of the inherent motions. Artificial rate dampers, consisting of small air-
driven rate gyroscopes interconnected with proportional-type pneumatic control actuators, were developed 
and used for artificial damping. 

After operations began in the tunnel, an external-type aerodynamic balance system was implemented 
above the ceiling of the test section for measurements of aerodynamic performance, stability, and control 
characteristics of the free-flight models. In later years, state-of-the-art internal electronic strain-gauge bal-
ances were used in test programs. 

Located near the Spin Tunnel,  the Langley 12-Foot Free-Flight Tunnel (now known as the Langley 12-Foot 
Low-Speed Tunnel) provided a unique free-flight test facility for national programs for over 15 years.  
However, researchers involved in free-flight model tests were continually looking for a larger facility to  
permit more space for flight maneuvers of larger models that were more representative of full-scale aircraft. 
The free-flight tunnel staff had even successfully conducted free-flight tests of VTOL  models as early as 
1956 within the gigantic 30- by 60-foot test section of the Langley Full-Scale Tunnel. Those tests were soon 
followed by a series of flight tests of other airplane configurations. In 1959, two events occurred that  
shifted the site of free-flight testing at Langley. First, a slack in the post–World War II operational schedule 
of the Full-Scale Tunnel permitted more free-flight tests to be conducted with larger, more sophisticated 
models, more spatial freedom, and less risk during flight evaluations. The second event was the organiza-
tion and staffing of the new NASA  Space Task Group (STG) at Langley to prepare for Project Mercury.  
Many staff members from the Full-Scale Tunnel transferred to the STG and moved to other locations, result-
ing in a significant depletion of the tunnel staff. Consequently, the free-flight tunnel staff and their model 
flying techniques were reassigned to the larger wind tunnel. The 12-Foot Free-Flight Tunnel was  
subsequently converted for conventional aerodynamic force-test studies of powered and unpowered mod-
els, and its test section was fixed in a horizontal attitude. The tunnel has been in continual use by NASA  
Langley for over 50 years and has proven to be a valuable low-cost, rapid-access asset for early assess-
ments of radical new concepts and configurations before more extensive tests are scheduled in other  
tunnels. 

The pioneers who led the early development and applications of dynamic model flight efforts in the vari-
ous spin tunnels and free-flight tunnels prior to 1960 became scientific legends within the NACA  and NASA. 
Individuals such as Charles H. Zimmerman, Charles J. Donlan, Joseph A. Shortal, Hubert M. Drake, Hartley 
A. Soule, Gerald G. Kayten, and John P. Campbell served long and distinguished careers with the NACA  
into the NASA  years, during which they became famous figures in NASA’s most historic aeronautical and 
space programs. 
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The Langley Full-Scale Tunnel 

The  move  to  the  Full-Scale  Tunnel  was  a 
gigantic  step  in  the  development  of  the  wind  tun-
nel  free-flight  technique  and  the  construction 
methods  used  for  the  free-flight  models.  This 
large  tunnel  became  the  center piece  of  free-flight 
studies  at  Langley  because  of  its  unique  design 
features.  The  tunnel  is  closed-circuit  and  open-
throat,  characterized  by  an  open  quasi-elliptical 
test  section  with  dimensions  of  60  feet  across  by 
30  feet  high  and  a  length  of  56  feet.  The  air  is 
drawn  through  the  test  section  at  speeds  up  to 
about  80  mph  by  two  4-bladed,  35.5-foot-diame-
ter  propellers  powered  by  two  4,000-horsepower 
electric  motors.  After  the  airstream  passes 
through  the  test  section,  it  returns  to  it  in  a  bifur-
cated  manner  through  wall  passageways  within 
the  building  enclosing  the  test  section. 

The  huge  Langley  Full-Scale  Tunnel  has  been  the  focal  point  of 
NASA’s  free-flight  model  studies.  The  large  test  section  and  open-
throat  design  permit  flight-testing  of  relatively  large  sophisticated 
models  of  aerospace  vehicles. 

Cross-sectional  views  of  the  Langley  Full-Scale  Tunnel  show  the  unique  open-throat 
test  section  and  large  dimensions  of  the  facility.  The  arrangement  permitted  pilots  and 
crews  to  be  outside  the  airstream  during  free-flight  operations.  With  a  continual  air-
speed  control  from  about  20  mph  to  about  80  mph  and  the  ability  to  withdraw  the  model 
from  the  test  section  in  the  event  of  loss  of  control,  the  tunnel  provided  an  ideal  test  site  
for  flying  models. 

For free-flight investigations, 
pilots fly the remotely controlled, 
powered model with minimal 
restraint in the 30- by 60-foot 
open-throat test section of the 
tunnel for various test conditions 
and airspeeds. Flying the model 
involves a carefully coordinated 
effort by the test team, whose 
members are at two sites within 
the wind tunnel building. One 
group of researchers is in a bal-
cony at one side of the open-
throat test section, while a pilot 
who controls the rolling and yaw-
ing motions of the model is in an 
enclosure at the rear of the test 
section within the structure of the 
tunnel exit-flow collector. Com-
pressed air powers the model, 
and a thrust pilot in the balcony 
controls the level of thrust. Seated 
next to the thrust pilot  is  the  pitch 



  

pilot,  who  controls  the  longitudinal 
motions  of  the  model  and  conducts 
assessments  of  dynamic  longitudinal  sta-
bility  and  control  during  flight  tests. 

Test  setup  for  free-flight  studies  in  the  Langley  Full-Scale  Tunnel.  The  pitch 
pilot  and  other  operators  concerned  with  the  longitudinal  motions  of  the  
model  and  its  horizontal  and  vertical  positions  in  the  tunnel  test  section  are 
in  a  balcony  at  the  side  of  the  test  section,  out  of  the  airstream.  The  pilot 
who  controls  the  rolling  and  yawing  motions  of  the  model  is  seated  in  an 
enclosure  at  the  rear  of  the  tunnel,  behind  the  model.  A  digital  flight  control 
computer  is  used  to  simulate  control  laws. 

The  requirement  for  multiple  pilots 
because  of  the  impact  of  dynamic  scaling 
of  models  has  already  been  discussed.  In 
addition  to  the  model’s  high  angular  rates, 
the  pilot  is  limited  by  flying  the  model 
remotely  with  only  visual  cues,  and  he 
cannot  sense  the  cues  provided  by  the 
accelerations  of  the  model—in  contrast  to 
a  pilot  onboard  the  full-scale  airplane. 
The  lack  of  acceleration  cues  can  result 
in  delayed  pilot  inputs  and  pilot-induced 		
oscillations,  which  can  be  critical  in  the 
relatively  constrained  area  of  the  tunnel 
test  section.  Other  key  members  of  the 
test  crew  include  the  test  conductor  and 
the  tunnel  airspeed  operator. 

Free-flight  evaluation  of  the  dynamic  stability  and  control  of  a 
powered  model  of  the  YF-22  fighter  prototype  at  high  angles  of 
attack  in  the  Langley  Full-Scale  Tunnel.  The  model  was  pow-
ered  with  compressed  air  ejectors  and  included  thrust-vector-
ing  engine  nozzles  and  a  nose  boom  equipped  with  angle-
of-attack  and  sideslip  vanes  and  sensors  for  implementation 
of  critical  flight  control  system  elements  of  the  full-scale  air-
craft.  The  outstanding  behavior  of  the  model  at  high  angles  of  
attack  was  subsequently  verified  by  the  airplane. 

A  light, flexible cable attached to the model serves 
two purposes. The first is to supply the model with 
compressed air, electric power for control actuators, 
and transmission of feedback signals for the con-
trols and sensors carried within the model. The sec-
ond purpose involves safety. A  portion of the cable is 
made up of steel that passes through a pulley above 
the test section. This part of the flight cable is used 
to snub the model when the test is terminated or 
when an uncontrollable motion occurs. The entire 
flight cable is kept slack during the flight tests by a 
safety-cable operator in the balcony, who accom-
plishes this job with a high-speed winch. 

The introduction of larger models and the emer-
gence of advanced flight control systems for full-
scale aircraft posed significant challenges for the 
design, fabrication, and instrumentation of free-flight 
models and the Full-Scale Tunnel. Model dimen-
sions greatly increased as model wingspans 
approached 6 feet or greater, scaled weights for the 
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models approached 100 pounds, and new types of propulsion units such as miniature turbofans and high 
thrust/weight propeller propulsion units required development. Fabrication of models changed from the 
simple balsa free-flight construction used in the 12-Foot Free-Flight Tunnel to high-strength, lightweight 
composite materials. The development and implementation of new model structures compatible with the 
rigors of flight-testing and loads imposed during severe instabilities were made even more complicated by 
the requirements of maintaining accurate scaling relationships for weight and mass distribution of the 
models. 

In recent years, the control systems used by the free-flight models have been upgraded to permit 
simulation of the complex feedback and stabilization logic involved in flight control systems for 
contemporary aircraft. The control signals from the pilot stations are transmitted to a digital computer in 
the balcony, and a special software program computes the control surface deflections required in 
response to pilot inputs, sensor feedbacks, and other control system inputs. Typical sensor packages 
include control-position indicators, linear accelerometers, and angular-rate gyros. Many models 
employ nose-boom-mounted vanes for feedback of angle of attack and angle of sideslip, similar to 
systems used on full-scale aircraft. Data obtained from the flights include optical and digital 
recordings of model motions, as well as pilot comments and analysis of the model’s response 
characteristics. 

The free-flight technique is used to obtain critical information on the behavior of aerospace 
configurations in 1 g level flight from low-speed stall conditions at high angles of attack to high-speed 
subsonic conditions at low angles of attack. Specific objectives are to evaluate the configuration’s dynamic 
stability and response to control inputs for flight at several angles of attack, up to and including conditions 
at which loss of control occurs at extreme angles of attack. In addition, an assessment is made of the 
effectiveness of the flight control system feedbacks and augmentation systems as well as airframe 
geometric modifications. 

A typical test sequence begins with the model ballasted for a specific loading. The model initially hangs 
unpowered from the safety cable and is lowered into the test section. Tunnel airspeed is then increased to 
the condition of interest, at which the model is trimmed with thrust and control inputs from the pilots and flies 
without restraint for the specified flight conditions. 

The technique has proven to be excellent for obtaining qualitative evaluations of the flying 
characteristics of aircraft configurations, especially unconventional and radical designs for which 
experience and data are lacking or nonexistent. Because the tests are conducted indoors, the test 
schedule is not subject to weather, and a relatively large number of tests can be conducted in a short 
time. Configuration modifications are quickly evaluated, and the models used in the flight tests are also 
used in conventional wind tunnel force and moment tests, which provide aerodynamic data for use in the 
analysis of the observed flight motions and the development of mathematical models of the configuration 
for use in piloted simulators. 

For over 50 years, the Langley Full-Scale Tunnel has been the site for a continual stream of free-flight 
investigations of aircraft and spacecraft configurations. As will be discussed in later sections, configurations 



  

    

studied have included high-performance fighters, vertical/short take-off and landing (V/STOL) aircraft, 
parawing vehicles, advanced  supersonic transport configurations, general aviation designs, new military 
aircraft concepts, and lifting bodies. Now under the operation of Old Dominion University (ODU) of Norfolk, 
VA, the Full-Scale Tunnel continues to support aeronautics research and development to this day. 

The Ames Hypervelocity Free-Flight Facilities 

Schematic  drawing  of  the  Ames  Supersonic  Free-Flight  Tunnel. 

Model,  sabot,  and  cartridge  assembly  prepared 
for  firing  in  the  Ames  Supersonic  Free-Flight  
Tunnel. 

In addition to its stable of low-speed dynamic model 
free-flight facilities, NASA  has developed specialized 
ground-based free-flight testing techniques to deter-
mine the high-speed aerodynamic characteristics, 
static stability, and dynamic stability of aircraft, Earth 
atmosphere entry configurations, planetary probes, 
and aerobraking concepts. The NASA  Ames 
Research Center led the development of such facili-
ties starting in the 1940s with the Ames Supersonic 
Free-Flight Tunnel (SFFT).10  The SFFT, which was 
similar in many respects to ballistic range facilities 
used for testing munitions, was a blow-down facility 
specifically designed for aerodynamic and dynamic stability 
research at high supersonic Mach numbers. Test speeds 
extended from low supersonic speeds to Mach numbers in 
excess of 10. In this unique facility, the model under test was 
fired at high speeds upstream into a supersonic wind tunnel 
airstream (typically Mach 2). The 1-foot by 2-foot test section of 
the tunnel was 18 feet long and used the Ames 12-Foot Low-
Turbulence Pressure Tunnel as a reservoir. Windows for shad-
owgraph photography were along the top and sides of the test 
section. The free-flight models were launched from guns about 
35 feet downstream of the test section. The launching process 
included the use of special sabots that transmitted the propel-
ling forces of the gun to the model during launch, after which the 
sabots aerodynamically separated from the model. The  
model’s flightpath down the test range achieved high test  
Reynolds numbers. 

Aerodynamic data were derived from motion time histories and measurements of the model’s attitudes 
during the brief flights. Dynamic stability characteristics could also be observed for the test article. Optical 
approaches for data reduction are required, because surface-mounted sensors and telemetry electronics 
would be destroyed, along with the model, at the terminal wall of the range. The development of the test 
technique and the associated instrumentation required years of work by the dedicated Ames staff. For 
example, the small research models had to be extremely strong to withstand high accelerations during the 
launch (up to 100,000 g’s) yet light enough to decelerate for drag determination while meeting requirements 
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for moments of inertia. Launching the models without angular disturbances or damage required extensive 
development and experience. Another major issue facing the researchers was data contamination caused 
by oblique shock waves in the test section. To resolve this problem, the upper and lower walls of the 
test section were diverged to allow the flow to expand steadily and avoid discontinuous compression at 
the shocks. 

View of the Physical Research Laboratory at Langley in 1949 showing the ill-fated Langley Free-Flight Facility in the foreground. 
The 100-foot-long, 8-foot-diameter facility was equipped with viewing windows but suffered poor flow characteristics during 
model flights and was closed before meaningful research results were obtained. 

The Supersonic Free-Flight Tunnel was completed in late 1949 and became operational in the early 
1950s.11 The unique testing capabilities of this Ames facility provided valuable information on supersonic 
drag, lift-curve slope, pitching moment variations with angle of attack, aerodynamic damping in roll, and the 
location of center of pressure of test specimens.12 

Efforts to develop a high-speed, free-flight apparatus had also taken place at Langley in the late 1940s at 
the Langley Physical Research Laboratory. The test apparatus consisted of an 8-foot-diameter tank with a 
length of 100 feet in which models would be propelled from a compressed-gas gun at speeds between 500 
and 1,000 mph. The test mediums for the facility included air, Freon, and mixtures of the two gases. Unfor-
tunately, early assessments of the free-flight test data obtained in the facility indicated severe choking and 
unacceptable aerodynamic contamination of results. In 1949, Langley moved its high-priority 11-Inch 
Hypersonic Tunnel to the same control-room site occupied by the free-flight facility and terminated the free-
flight activities. The facility was then demolished, without producing significant technical output. 

http:specimens.12
http:1950s.11


  

In  1958,  free-flight  aeroballistic  testing  evolved  considerably  with  the  advent  of  the  Ames  Pressurized  
Ballistic  Range  (PBR).  This  facility  had  a  203-foot-long,  10-foot-diameter  test  section  with  24  orthogonal  shad-
owgraph  stations  and  could  be  operated  at  pressures  ranging  from  0.1  to  10  atmospheres  (providing  an 
impressive  range  of  achievable  Reynolds  number  variations).  Models  were  launched  from  an  arsenal  of  guns 
(powder  and  light-gas  of  various  sizes)  into  this  test  section.  Aerodynamic  testing  was  typically  performed  at 
velocities  up  to  10,000  feet/second,  whereas  some  ablation  studies  were  conducted  up  to  22,000  feet/second. 
Some  of  the  major  programs  and  missions  supported  in  the  PBR  were  X-15,  Mercury,  Gemini,  Polaris,  Apollo, 
Viking,  and  NASA’s  Aero-assist  Flight  Experiment  (AFE).  The  PBR  was  last  operated  in  1987. 

Sketch  of  the  Ames  Hypervelocity  Free-Flight  Aerodynamic  
Facility.  Equipped  with  a  shock  tube  for  extreme  Mach  numbers, 
the  facility  has  provided  extensive  supersonic  and  hypersonic 
free-flight  data  in  a  variety  of  investigations. 

View  of  the  Hypervelocity  Free-Flight  Aerodynamic  Facility  
during  recent  tests  in  support  of  the  NASA  Orion  project. 

As light-gas gun technology continued to evolve 
and velocity capabilities continued to increase, 
NASA  brought online its most advanced aerobal-
listic testing capability, the Ames Hypervelocity 
Free-Flight Aerodynamic Facility (HFFAF), in 1964. 
This facility was initially developed in support of the 
Apollo program and utilized both light-gas gun and 
shock tube technology to produce lunar return and 
atmospheric entry conditions (24,600 mph relative 
model velocities). At the center of the facility was a 
75-foot-long test section that could be evacuated 
to subatmospheric pressure  levels or backfilled 
with various test gases to simulate flight in various 
planetary atmospheres. The test section was con-
figured with 16 orthogonal shadowgraph imaging 
stations and a high-precision, spatial reference 
wire system. At one end of the test section, a family 
of light-gas guns (ranging in size from 0.28 to 1.50 
caliber) was used to launch aerodynamic models 
(at speeds up to 13,400 mph) into the test section, 
while at the opposite end a large shock tube could 
be simultaneously used to produce a counterflow-
ing airstream (the result being relative model 
velocities approaching 24,600 mph or Mach num-
bers of about 30). This counterflow mode of opera-
tion proved to be very challenging and was used 
for only a brief time from 1968 to 1971. Throughout 
much of the 1970s and 1980s, this versatile facility 
was operated as a traditional aeroballistic range, 
using the guns to launch models into quiescent air 
(or some other test gas), or as a hypervelocity 
impact test facility. From 1989 through 1995, the 
facility was operated as a shock tube–driven wind 
tunnel for scramjet propulsion testing. In 1997, the 
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HFFAF underwent a major refurbishment and was returned to an aeroballistic mode of operation with 
extended light-gas gun capabilities and powder-gas guns that had been previously used in the PBR.13  It 
continues to operate in this mode and is NASA’s only remaining aeroballistic test facility. 

In its current (circa 2009) operating configuration, the HFFAF utilizes a suite of guns (powder and light-
gas) to propel models into the aerodynamic test section, wherein the shadowgraph imaging stations are 
used to capture the model’s flight time history. The resultant trajectory record is then used to extract critical 
aerodynamic parameters for the configuration being studied. In addition, infrared cameras can be posi-
tioned at various stations to record model surface temperature distributions at different points along the 
model’s flight path. From this information, heat transfer rates and transition to turbulence locations can be 
inferred. Some of the major programs and missions that have been supported in the HFFAF include Apollo, 
Viking, Pioneer Venus, Galileo, Shuttle, International Space Station, National Aero-Space Plane (NASP), 
Mars Science Laboratory, and the Crew Explorations Vehicle (CEV/Orion).14  In addition, the HFFAF has 
been used frequently for fundamental aerodynamics testing, material testing, and sonic boom research.15 

A  one-quarter-scale  free-flight  model  of  the  Lockheed  XFV-
1  VTOL  tail  sitter  airplane  being  prepared  for  hovering  tests 
in  the  return  passage  of  the  Ames  40- by  80-Foot  Tunnel. 
The  test  of  the  250-pound  model  was  the  only  subscale 
free-flight  test  conducted  in  the  facility.  Note  the  propeller-
guard  assembly  for  the  counter-rotating  propellers,  the 
flight  cable  providing  power  and  control  inputs,  and  the 
wingtip-mounted  stabilization  lines. 

The Ames 40- by 80-Foot Tunnel 

Ames  researchers  also  briefly  conducted  an  explor-
atory  free-flight  model  test  in  the  gigantic  40- by  80-Foot 
Tunnel  in  the  early  1950s.  Lockheed  and  Ames  partnered 
for  an  exploratory  investigation  to  determine  the  hovering 
and  low-speed  flight  characteristics  of  a  large  powered 
model  of  the  Lockheed  XFV-1  “tail  sitter”  VTOL  airplane.16  
The  objectives  of  the  free-flight  activity  were  to  demon-
strate t hat t he c onfiguration w as c apable o f s uccessfully 
performing  its  operational  requirements,  to  verify  and 
supplement  predictions  of  stability  and  control,  and  to 
assess  the  feasibility  of  piloting  techniques  in  the  40- by 
80-Foot  Tunnel.  Flying  the  250-pound  model  in  the 
closed  test  section  of  the  tunnel  remotely  proved  to  be 
challenging  for  a  single  pilot.  Details  of  the  test  setup  and 
results  will  be  discussed  in  a  later  section. 

In  recognition  of  the  40- by  80-foot  facility’s  status  as 
the  premier  NACA–NASA  large-scale  subsonic  wind  tun-
nel,  the  demands  for  conventional  large-scale  perfor-
mance  tests  of  aircraft  and  rotorcraft  there  precluded  the 
possibility  of  conducting  other  subscale  free-flight  tests. 
To  the  author’s  knowledge,  this  test  program  has  been 
the  only  free-flight  model  study  conducted  in  the  facility. 
Virtually  all  large-scale  subsonic  free-flight  testing  
has  been  more  suitably  been  directed  to  the  Langley 
Full-Scale Tunnel. 



  

Outdoor Free-Flight Facilities and Ranges 

Although the foregoing wind tunnel free-flight testing facilities provide unique and valuable information 
regarding the flying characteristics of advanced aerospace vehicles, they are inherently limited or unsuit-
able for certain applications. In particular, vehicle motions for other than 1 g flight involving large maneuvers 
or out-of-control conditions result in significant changes in flight trajectory and altitude, which can only be 
studied in the expanded spaces provided by outdoor facilities. In addition, research directed at high-speed 
dynamic stability and control problems could not be conducted in Langley’s low-speed wind tunnels. Out-
door testing of dynamically scaled free-flight models was therefore developed and applied in many research 
activities at Langley, Dryden, Ames, and Wallops. 

Langley Unpowered Drop Models 

NASA  has  used  unpowered  drop  models  for  a  variety  of  research  and  development  activities  involving 
advanced  aircraft  and  space  vehicles.  Although  these  outdoor  test  techniques  are  more  expensive  than  are 
wind  tunnel  free-flight  tests  and  are  subject  to  limitations  because  of  weather,  the  results  obtained  are  unique, 
cannot  be  obtained  in  wind  tunnels,  and  are  especially  valuable  for  certain  types  of  flight  dynamics  studies. 

One of the most important drop-model applications is in the study of aircraft spin entry motions, which 
includes analyses of spin resistance and poststall gyrations. A  significant void of information exists between 
the prestall and stall-departure results produced by the wind tunnel free-flight test technique in the Full-
Scale Tunnel discussed earlier and the results of fully developed spin evaluations obtained during spin 
tunnel tests. This information can be critically misleading for some aircraft designs. For example, some 
aircraft  configurations  exhibit  severe  instabilities  in  pitch,  yaw,  or  roll  at  stall  during  wind  tunnel  free-flight  tests, 
and  they  may  also  exhibit  potentially  dangerous  spins,  from  which  recovery  is  impossible  during  spin  tunnel 
tests.  However,  a  combination  of  aerodynamic  and  inertial  properties  can  result  in  this  same  configuration 
exhibiting  a  high  degree  of  resistance  to  enter  the 
dangerous  spin  following  a  departure,  despite 
forced  spin  entry  attempts  by  a  pilot.  On  the  other 
hand,  some  configurations  easily  enter  developed 
spins  without  prolonged  assistance  from  the  pilot. 
Of  equal  importance,  drop-model  testing  is  required 
to  define  the  most  effective  control  strategies  to  be 
used  by  the  pilot  of  the  full-scale  aircraft  for  recov-
ery  from  out-of-control  motions. 

Free-flight  model  of  a  representative  general-aviation  airplane  
being  prepared  for  spin  entry  tests  using  a  catapult  device  in 
1950.  The  launching  apparatus  used  an  elastic  bungee  cord  to 
propel  the  model  with  preset  controls  into  a  stall  and  incipient  spin. 

To evaluate the resistance of aircraft to spins, in 
1950, NACA  Langley revisited the catapult tech-
niques of the 1930s and experimented with an 
indoor catapult launching technique within the 
same building (about 70 feet square and 60 feet 
high) that had earlier housed the 15-Foot Spin 
Tunnel and the 5-Foot Free-Flight Tunnel.17  An 
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elastic bungee  cord launched the unpowered model from a launching platform near the ceiling of the build-
ing with preset fixed spin entry control settings. Data from the brief flight were recorded with motion pictures, 
and no instrumentation was carried within the model. A  large net stretched across the bottom of the building 
was used to recover the model after the test flight. This exploratory study was stimulated by the growing 
requirement to define the spin resistance of radical new configurations of the 1950s and to develop a capa-
bility to extend the wind tunnel free-flight tests. Once again, however, the catapult technique proved to be 
much too cumbersome and limited by testing space, and other approaches to study spin entry were pur-
sued. Although  the catapult-launched model was not a primary test technique during modern times, NASA  
later used it in response to a quick-reaction request from the U.S. Air Force for analysis of spin entry char-
acteristics of the B-58 aircraft, as will be discussed in the next chapter. These tests were conducted in a 
large airship hangar at the Weeksville Naval Air Facility at Elizabeth City, NC. 

Disappointed by the inherent limitations of the catapult-launched technique, the Langley researchers 
began to explore the feasibility  of an outdoor drop-model technique in which models could be launched from 
a helicopter at much higher altitudes, permitting more time to study the spin entry and the effects of recov-
ery controls. Initially, limited experiments were conducted at Langley Air Force Base in a constrained area 
to evaluate various schemes for ground-based remote control of the models and methods for coordination 
of the operation. Encouraged  by initial successes, researchers conducted a search to locate a more feasi-
ble test site for routine operations. The primary parameters for suitable test sites were a location near 
Langley and a large drop range away from human inhabitants and dwellings. After additional trials involving 
model launches from a helicopter at altitudes as high as 2,000 feet at the Patrick Henry Airport in Newport 
News, VA, the research operations began in 1958 at a low-traffic airport near West Point, VA, about 40 
miles from Langley. 

As testing progressed at West Point, the technique evolved into an operation consisting of launching the 
unpowered model at an altitude of about 2,000 feet and evaluating its spin resistance with remotely located, 
ground-based pilots who attempted to promote 
spins by various combinations of control inputs 
and maneuvers. At the end of the evaluations, an 
onboard recovery parachute was deployed and 
used to recover the model. The model was 
retrieved after a ground landing. This test 
approach proved to be the prototype of an 
extremely successful testing technique that 
NASA updated and applied for over 50 years.18 

Ground  control  stations  for  pitch  and  roll-yaw  pilots  in  early  drop 
model  tests.  The  crew  consisted  of  a  pitch  pilot,  a  roll-yaw  pilot, 
and  a  tracker  operator.  Binoculars  were  used  for  close-in  views 
of  the  model  during  flight,  and  a  tracking  camera  recorded  motion 
pictures  of  the  model’s  motions. 

The  drop  models  used  in  studies  of  the  mid-
1950s  represented  a  tremendous  leap  in  sophisti-
cation  for  free-flight  models  of  the  time,  as  well  as 
significant  challenges  for  model  designers  and 
fabricators.  The  models  were  large  (typically  hav-
ing  fuselages  of  about  7  feet  and  weighing  over 
100  pounds)  and  were  constructed of composite 



  

materials to withstand the high g’s of ground impact, even when slowed by the recovery parachute. For-
ward-looking miniature motion-picture cameras were mounted on board the models in flowthrough engine 
inlets to photograph the positions of flow-direction vanes mounted on a nose boom as well as control posi-
tion indicator lights mounted on the fuselage interior. The helicopter used for launches at the time experi-
enced considerable turbulence under its fuselage at low forward speeds; therefore, the drop model was 
mounted at the end of a 5-foot-long extensible vertical shaft and lowered to a position below the helicopter 
fuselage for launch at a forward airspeed of about 60 knots. 

Initially, two separate tracking units consisting of modified power-driven antiaircraft gun trailer mounts 
were used by two pilots and two tracking operators to track and control the model. One pilot and tracker 
were to the side of the model’s flight path, where they could control the longitudinal motions following 
launch, while the other pilot and tracker were about 1,000 feet away, behind the model, to control lateral-
directional motions. As the technique was refined in later years, a single dual gun mount arrangement was 
used by both pilots and a single tracker operator. 

Drop  model  of  the  F-4  fighter  mounted  on  launch  helicopter  during  an  evaluation  of  spin  resistance  in  1960  at  the  West  Point,  VA, 
airport.  After  the  altitude  and  speed  for  launch  conditions  were  satisfied,  the  model  was  lowered  on  a  vertical  shaft  and  released. 

The success of drop-model testing in predicting spin resistance and spin recovery procedures for military 
aircraft was disseminated within appropriate Department of Defense (DOD) organizations, resulting in an 
immediate increase in workload for emerging configurations and an urgency to conduct additional efforts to 
locate a test site closer to the Langley Research Center for improved efficiency and turnaround time in 
research projects. Another undesirable characteristic of the West Point operation was the presence of con-
crete runways, which caused  significant damage to models during some landings. In 1959, the Air Force 
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granted Langley approval to conduct drop 

tests at the abandoned Plum Tree bombing 

range near Poquoson, VA, about 5 miles from 

Langley. The Air Force had cleared the marshy 

area under consideration of depleted bombs 

and munitions. Access to the property was 

negotiated with private citizens, and clearance 

for the NASA  drop operations was monitored 

and approved by the control tower at Langley 

Air Force Base (the area was within the flyover 

zone of aircraft operations at Langley). A  tem-
porary building and concrete landing pad for 

the launch helicopter were added for opera-
tions at Plum Tree, and a surge of request 

jobs for U.S. high-performance military aircraft 

in the mid- to late 1960s (F-14, F-15, B-1, F/A-
18, etc.) brought a flurry of test activities that 

continued until the early 1990s. 


Aerial  view  of  the  NASA  test  site  at  Plum  Tree  and  its  proximity  to 
Langley  Air  Force  Base.  The  town  of  Poquoson,  VA,  is  at  the  right  of 
the  photograph.  The  marshy,  soft  land  was  well-suited  for  drop-model 
testing  and  was  used  for  over  30  years. 

During operations at Plum Tree, the sophistication of the drop-model technique dramatically increased. 
High-resolution video cameras were used for tracking the model, and graphic displays were presented to a 
remote pilot control station, including images of the 
model in flight and the model’s location within the 
range. A  high-resolution video image of the model was 
centrally located in front of a pilot. In addition, digital 
displays of parameters such as angle of attack, angle 
of sideslip, altitude, yaw rate, and normal acceleration 
were also in the pilot’s view. The centerpiece of opera-
tional capability  was a digital ground-based flight con-
trol computer programmed with variable research flight 
control laws and a flight operations computer with 
telemetry downlinks and  uplinks.  The  drop  models  con-
tinued  to  be  constructed  of  composite  materials, but the 
instrumentation was upgraded to include three-axis lin-
ear accelerometer packages and three-axis angular 
rate gyro packages.19 

A  fish-eye  camera  lens  captures  a  scene  of  a  drop  model  of 
the  X-31  research  aircraft  being  prepared  for  a  drop  as  part 
of  poststall  and  spin  resistance  studies. 

Operations  at  Plum  Tree  lasted  about  30  years  and 

included a broad scope of investigations for military air-
craft  configurations,  general-aviation  configurations, 

parawings,  gliding  parachutes,  and  reentry  vehicles.  In 

the  early  1990s,  however,  several  issues  regarding 

environmental  protection  forced NASA  to close its 
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research activities at Plum Tree and remove its facilities. NASA  
assisted in the restoration of the environment to its current status 
as a restricted access game preserve. Once again, Langley 
researchers were forced to identify a suitable test site for future 
drop-model testing. After considerable searching and consider-
ation of several candidate sites, the NASA  Wallops Flight Facility 
was chosen for Langley’s drop-model activities. 

The most recent drop tests of a military fighter for poststall stud-
ies began in 1996 and ended in 2000. This project, which evalu-
ated the spin resistance of a 22-percent-scale model of the U.S. 
Navy F/A-18E Super Hornet, was the final evolution of drop-model 
technology for Langley.20  Launched from a helicopter at an altitude 
of about 15,000 feet in the vicinity of Wallops, the Super Hornet 
model weighed about 1,000 pounds. A  camera mounted  in the 
cockpit canopy of the model provided an onboard-pilot’s view of 
the flight, while the remote pilot in command sat in an environmen-
tally controlled room at a pilot station with data displays and video 
images for input cues. The model included extensive instrumenta-
tion to provide data to the flight control computer, the data displays 
for the drop-model cockpit, and postflight data analysis. Recovery 
of the model at the end of the flight test was again conducted with 
the deployment of onboard parachutes. The model used a flota-
tion bag after water impact and was retrieved from the Atlantic 
Ocean by a recovery boat. 

Dryden Unpowered Drop Models 

The legendary contributions of the NASA  
Dryden Flight Research Center in flight-testing 
full-scale aerospace vehicles, demonstrators, 
and hardware  have been  demonstrated. 
Nearly every major breakthrough in this 
Nation’s aeronautics legacy occurred there, 
including flights of the X-1, X-15, Shuttle, lifting 
bodies, X-43, and spacecraft rescue vehicles. 
The public may be less familiar with the fact 
that Dryden researchers have conducted a 
range of important aerospace projects involv-
ing the launching of an unpowered test articles 
from an airborne vehicle. The following is an 
overview of approaches used at Dryden during tests of subscale unpowered free-flight models to investi-
gate flight behavior of advanced concepts. Results of specific applications will be covered in a later section. 

An  F/A-18E  drop  model  is  launched  from 
a  NASA  helicopter  over  the  NASA  Wallops 
Flight  Facility  for  spin  resistance  studies.  With 
a  weight  of  1,000  pounds,  the  F/A-18E  model 
was  the  largest  drop  model  ever  tested  by 
Langley  researchers. 

Water  retrieval  of  the  F/A-18E  drop  model  from  the  Atlantic  Ocean 
after  a  drop  test.  The  descent  by  parachute  into  the  water  posed  spe-
cial  problems  for  model  designers,  instrumentation  specialists,  and 
the  operational  crew. 
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Dryden’s primary advocate and highly successful user of free-
flight models for low-speed research on advanced aerospace 
vehicles was the late Robert Dale Reed. An avid model builder, 
pilot, and enthusiastic researcher, Reed was inspired by his per-
ceived need for a subscale free-flight model demonstrator of the 
emerging lifting body reentry configuration created by NASA  
Ames in 1962.21 

After initial testing of gliders of the Ames M2-F1 vehicle, he 
progressed into towed models of the configuration released by 
radio-controlled model tow planes. In the late 1960s, the launch-
ing technique for the unpowered models used a powered radio-
controlled mother ship, and by 1968, Reed’s mother ship had 
conducted over 120 launches. As will be discussed in a later 
section, the success of Reed’s lifting body model flight work had 
a dominant effect on subsequent development of the full-scale 
series of lifting bodies, as well as the Space Shuttle. Dale Reed’s 
innovation and approach to using radio-controlled mother ships 
for launching drop models of radical configurations has endured 
to this day as the preferred approach to be used for small-scale 
free-flight activities at Dryden. 

Innovative  engineer  Dale  Reed  of  the  Dryden 
Flight  Research  Center  used  free-flight  models 
to  demonstrate  concepts  for  advanced  aero-
space  configurations. 

In  the  early  1970s,  Reed’s  work  at  Dryden  expanded  into  a  series  of  flight  tests  of  powered  and  unpowered 
remotely  piloted  research  vehicles  (RPRVs).  These  activities,  which  included  remote-control  evaluations  of 

subscale  and  full-scale  test  subjects,  used  a  ground-
based  cockpit  equipped  with  flight  instruments  and 
sensors  typical  of  a  representative  full-scale  airplane. 
These  projects  included  the  Hyper  III  lifting  body  and 
a  three-eighths-scale  dynamically  scaled  model  of  the 
F-15.  The  technique  used  for  the  F-15  model  con-
sisted  of  air  launches  of  the  test  article  from  a  B-52 
and  control  by  a  pilot  in  a  ground  cockpit  outfitted  with 
a  sophisticated  control  system.22  The  setup  featured  a 
digital  uplink  capability,  a  ground  computer,  a  televi-
sion  monitor,  and  a  telemetry  system.  This  test  tech-
nique  in  1973  preceded  Langley’s  development  of 
similar  sophistication.  Initially,  the  model  was  recov-
ered  on  its  parachute  in  flight  by  helicopter  midair 
snatch,  but  in  later  flights,  the  evaluation  pilot  landed 
it  on  skids.  Over  50  flights  were  made  with  the  F-15 
Spin  Research  Vehicle.  Results  of  Dryden’s  tests  of 
the  23.5-foot-long  model  for  spin  entry  research  will 
also  be  discussed  in  a  later  section. 

F-15  spin  research  vehicle  mounted  to  a  pylon  on  its  B-52 
launch  aircraft.  The  unpowered  drop  model  was  the  first  in  a 
long  line  of  remotely  piloted  subscale  models  and  was  used  in 
conjunction  with  a  piloted  simulator  at  Dryden  and  a  smaller 
F-15  drop  model  at  Langley  to  define  spin  entry  maneuvers 
for  the  F-15  aircraft. 



  

Langley Powered Free-Flight Models 

In addition to the powered free-flight wind tunnel models  discussed earlier, NASA  has used powered 
dynamically scaled models at Langley, Ames, and Dryden for investigations of flight dynamics issues for 
general-aviation aircraft, parawing vehicles, civil transports, and advanced aircraft configurations. In addi-
tion to its in-house research and development efforts and cooperative programs with its industry and  
military partners, NASA  has also stimulated the use of  
powered dynamic models within the university community, 
greatly increasing the interest and engineering capabilities of 
students. 

At Langley, outdoor powered  models have been used in 
major programs focused on the development of military 
drones in support of DOD, dynamic stability and control stud-
ies of parawing utility vehicles and spacecraft, investigations 
of general-aviation stall/spin technology, and commercial 
transport recovery in large-attitude, out-of-control (“upset”) 
situations. Most of these tests used the Plum Tree test area 
between 1962 and 1992 and simplified versions of the test-
ing techniques previously described. As will be discussed, 
some of the testing sought to develop relatively inexpensive 
free-flight techniques that could be applied using modified 
hobbyist equipment.23 

In recent years, Langley has embarked on a sophisticated powered-model technique in support of its 
Aviation Safety program. The test objectives are to investigate controllability options for multiengine com-
mercial transport-type configurations in upset situations or after airframe/control system damage. 

NASA  conducted  research  on  the  spinning  charac-
teristics  of  general  aviation  designs  in  the  mid-1970s 
with  powered  radio-controlled  dynamically  scaled 
models  using  modified  hobbyist-type  gear.  These 
dynamically  scaled  models  were  significantly  heavier 
than  conventional  hobbyist  radio-controlled  models. 

The  NASA  AirSTAR  program  is  developing  a  powered  free-flight 
model  technique  to  study  upset  recovery  and  other  safety  issues  for 
commercial  transport  configurations.  Flight  tests  of  generic  powered 
transport  models  are  underway  to  minimize  risk  during  studies  of  a 
scaled  model  of  the  test  subject. 

This project, known as the Airborne Subscale 
Transport Aircraft Research (AirSTAR) pro-
gram,24  will be discussed in the next chapter. 
As part of the activity, Langley researchers 
have developed a computer-based powered-
model capability comparable to the drop-model 
operations discussed earlier. A  special runway 
for unmanned aerial vehicle (UAV) operations 
at Wallops is to be used for research opera-
tions, and mobile vehicles transported to the 
site are equipped with sophisticated pilot sta-
tions, avionics equipment, and digital comput-
ers for simulation of control laws and data 
acquisition. The commercial transport models 
are large (with a 7-foot wingspan), dynamically 
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scaled, and powered by state-of-the-art model turbine engines. The  AirSTAR  project  is  focused  on  a  5.5-per-
cent  dynamically  scaled  model  of  the  Boeing  757  aircraft,  referred  to  as  the  Generic  Transport  Model  (GTM). 
The  GTM  vehicle  weighs  about  55  pounds,  with  approach  speeds  of  about  70  mph.  A  multiyear  developmen-
tal  process  has  been  underway  to  develop  the  pilot  skills,  instrumentation,  and  testing  required  for  risk  reduc-
tion.  A  phased  series  of  flight  projects  are  being  conducted,  beginning  with  relatively  low-cost,  low-wing-
loading  models  flown  near  Langley  in  Smithfield,  VA. 

Langley Control Line Facility 

One  of  the  more  unusual  free-flight 
techniques  ever  developed  by  Langley 
resulted  from  issues  regarding  the  inter-
pretation  of  wind  tunnel  free-flight  results 
for  vertical  take-off  and  landing  (VTOL) 
models  in  the  early  1960s.  The  issue 
arose  because  many  of  the  VTOL  
designs  exhibited  severe  stability  prob-
lems  at  high  angles  of  attack  during  the 
transition  from  hovering  flight  to  conven-
tional  forward  flight.  Because  the  air-
speed  of  the  Full-Scale  Tunnel  could  not 
be  rapidly  increased  to  simulate  a  rapid 
aircraft  transition  during  free-flight  model 
tests,  it  was  argued  that,  theoretically,  an 
unstable  airplane  might  be  able  to  quickly 
transition  through  the  unstable  range  
of  angle  of  attack  before  it  could  react  to 
the  instabilities  and  experience  a  loss  
of  control. 

Test  setup  for  rapid  transition  testing  of  free-flight  V/STOL  models  on  the 
Langley  Control  Line  Facility.  Results  obtained  from  the  tests  generally 
showed  that  configurations  could  minimize  their  exposure  to  instabilities  dur-
ing  a  relatively  brief  time  at  high  angles  of  attack,  thereby  achieving  more 
satisfactory  transitions  between  hovering  and  forward  flight. 

Recognizing that this was a fundamental free-flight model issue for this class of aircraft, the Langley staff 
created an outdoor rapid-transition testing technique.25  Langley acquired a large crane capable of rapid 
rotation and equipped it with model power systems and remote-control capability. The crane could be 
rotated at angular rates up to about 20 revolutions per minute and could accelerate from rest to top speed 
in about 1/4 revolution. Seated in an enlarged crane cab were the model-controls operator, the safety-cable 
operator, the model-power operator, and the crane operator. The powered model being tested was mounted 
about 50 feet from the center of rotation and was restrained by wires from the model to the crane cab to 
oppose the centrifugal force during flight around the circle. The tests, which resembled the control-line 
technique traditionally used by model airplane enthusiasts, were limited to studies of the longitudinal 
motions of the model during a relatively rapid transition process. The testing technique was matured over a 
few years, and the facility subsequently became known as the Langley Control Line Facility (CLF). In the 
CLF, transitions could be made much more rapidly than were those in the Full-Scale Tunnel and at rates 
more representative of those of full-scale VTOL  airplanes. Results verified the expected positive result of 



  

rapid transitions for tail-sitter, tilt wing, and vectored-thrust V/STOL  configurations. The CLF was opera-
tional for several tests and was dismantled in 1970. 

Ames Powered Free-Flight Models 

The NASA  Ames Research Center conducted and spon-
sored outdoor free-flight powered model testing in the 1970s 
as a result of interest in the oblique wing concept championed 
by R.T. Jones. The tests included investigations of the flying 
characteristics of several models of the unorthodox configura-
tion and will be discussed in more detail in the next chapter. 
The progression of sophistication in these studies started with 
simple unpowered catapult-launched models at Ames and 
inspired cooperative testing of powered models at Dryden 
flight-test sites in the 1970s and piloted flight tests of the AD-1 
oblique wing demonstrator aircraft in the 1980s.26  In the 1990s, 
Ames and Stanford University collaborated on potential 
designs for oblique wing supersonic transport designs, which 
led to flight tests of a 10-foot-span model by Stanford in 1993. 
In 1994, a 20-foot-span model was designed, constructed, 
and flown by Stanford at Moffett Field near Ames. 

Oblique  wing  research  vehicle  flown  in  coopera-
tive  study  between  Ames  and  Dryden  research-
ers  during  the  1970s  to  explore  the  aerodynamics 
and  flying  characteristics  of  the  configuration.  The 
vehicle  was  designed  to  permit  its  left  wing  panel 
to  be  swept  forward  45  degrees.  Three  research 
flights  in  1976  provided  data  for  the  design  of  the 
piloted  AD-1  research  aircraft. 

Dryden Powered Free-Flight Models 

The  X-36  Tailless  Fighter  Agility  Research  Aircraft  in  flight.  The  sophisticated 
model  demonstrated  that  a  tailless,  low-signature  configuration  could  achieve 
high  levels  of  maneuverability  through  the  use  of  advanced  technology. 

Dryden’s  superb  flight-test  ranges  and 
the  expertise  of  its  staff  in  advanced  flight 
technology  have  historically  been  used  to 
evaluate  and  demonstrate  the  capabilities 
of  remotely  piloted,  powered  drones, 
including  fighters,  atmospheric  and  envi-
ronmental  samplers,  long-duration  high-
altitude  fliers,  and  solar-powered  configu-
rations.  To  focus  on  the  subject  matter  of 
this  book,  three  subscale  powered  model 
flight  tests  are  discussed.  One  project, 
known  as  Highly  Maneuverable  Aircraft 
Technology  (HiMAT),  was  conducted  in  the 
late  1970s  using  the  Dryden  RPRV  capa-
bilities  that  had  been  developed  for  the  pre-
viously  mentioned  B-52  launched  unpow-
ered  F-15  model  spin  investigation.27  Although  a  full-scale  HiMAT  vehicle  was  not  proposed  for  the  program, 
the  RPRV  was  considered  to  a  subscale  version  of  a  larger  vehicle.  The  second  subscale  Dryden  project  of 
relevance  was  the  powered  X-36  Tailless  Fighter  Agility  Research  Aircraft  program,  conducted  in  1997.28  
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Using  a  video  camera mounted in the nose of the aircraft, the X-36 was remotely controlled by a pilot in a 
ground station virtual cockpit. A  standard fighter-type, head-up display (HUD) and a moving-map represen-
tation of the vehicle’s position within the range provided situational awareness for the pilot. The third Dryden 
powered model project to be discussed is the current Dryden flight tests of the X-48B blended wing-body. 

Wallops Rocket-Boosted Models 

As interest in transonic and supersonic flight increased in the 1940s, the NACA  feverishly pursued the 
development of high-speed wind tunnels, but the presence of tunnel walls contaminated tunnel data until 
Langley personnel, under the direction of John P. Stack, devel-
oped and demonstrated the breakthrough concept of slotted 
walls. In lieu of a reliable transonic tunnel, researchers turned to 
the concept of unpowered “free-fall” models to obtain information 
on aerodynamics, stability, and control at transonic speeds. This 
effort started in late 1944, when instrumented objects were 
dropped from NACA  research aircraft to acquire transonic data 
near Langley Field. The pioneering work was accompanied by 
two other approaches in the attack on transonic phenomena, 
which consisted of tests of small, instrumented semispan wings 
mounted in the high-speed flow on the upper wing surfaces of 
fighter aircraft and a proposal for a high-speed research airplane 
to be known as the X-1. In 1945, a proposal was made to develop 
an NACA  high-speed test range that would use rocket-assisted 
launches to explore the transonic and supersonic flight regimes. 
The facility would ultimately become known as the NACA   
Wallops Island Flight Test Range. Initially known as the Pilotless 
Aircraft Research Station, the site launched its first rocket in  
July 1945.29  Most of the Wallops tests were designed to explore 
model characteristics at compressible flight conditions and  
were therefore subject to the modified scaling procedures  
mentioned earlier. 

F-102 free-flight model is prepared for rocket 
launched flight at Wallops. Extensive flight 
testing of hundreds of rocket-boosted models 
occurred at Wallops during its NACA  days. 
Note that the model has been modified with 
the wasp-waisted  area rule concept conceived 
by Richard T. Whitcomb of Langley. 

From 1945 through 1959, Wallops served as a rocket-model “flying wind tunnel” for researchers at Lang-
ley and conducted vital investigations for the Nation’s emerging supersonic aircraft, especially the Century 
series of advanced fighters in the 1950s. Rocket-boosted models were used by Langley’s Pilotless Aircraft 
Research Division (PARD) in flight tests at Wallops to obtain valuable information on aerodynamic drag, 
stability, and control at transonic conditions. 

With the establishment of NASA  in 1958 and the immediate focus of the new Agency on higher speeds 
and spacecraft, Wallops became an independent NASA  facility, and its work on aircraft characteristics was 
replaced by investigations on satellites, sounding rockets, and ballistic missiles. Today, Wallops is recog-
nized as a world leader for launching rockets and satellites, but few remember the key role it played in 
rocket-boosted free-flight model testing for supersonic aircraft configurations. 
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SELECTED APPLICATIONS  

The earliest applications of dynamically scaled models at the NACA  Langley Memorial Aeronautical Lab­
oratory occurred during research efforts on aircraft spin and spin recovery behavior.1  The visual results 

of these investigations provided very effective illustrations  of the potentially deadly nature of the spin and 
the impact of modifications to airplane configurations. Interpretation of the test results was fairly straight­
forward, and subsequently, the use of free­flight model test techniques was adopted for other technical 
areas as an integral tool in the research process. Model flight tests offered several important capabilities 
and advantages beyond those provided by conventional static wind tunnel aerodynamic force tests. The 
ability to visualize the inherent dynamic stability of an aircraft configuration and its response to atmospheric 
disturbances as well as to pilot inputs provided a qualitative  assessment of flying characteristics and design 
information on the impact of geometric variables. The relative severity of issues in stability and control was 
easily assessed, and the ability of modifications to minimize or eliminate problems provided valuable guid­
ance for major design decisions. 

For each of the testing techniques previously discussed, initial efforts were directed at correlating results 
of model and full­scale flight tests to establish confidence in the model test procedures and to develop 
approaches for interpretation of the test results. Lessons learned in many applications created a fundamen­
tal knowledge of potential pitfalls and resulted in modifications to the testing techniques because of factors 
such as Reynolds number and wind tunnel constraints. 

Based on almost 90 years of experience, NASA  and its partners have demonstrated the technical advan­
tages of free­flight testing far beyond the visual results. One of the more important advantages of model 
flight tests is that they provide  for continual operations over the flight envelope in terms of flight parameters 
such as angle of attack and sideslip. In contrast, conventional wind tunnel aerodynamic force tests are 
constrained to limited combinations of angles of attack and sideslip, and a great deal of experience is 
required to schedule in advance the potentially critical flight conditions of interest for tunnel tests. Thus, the 
free­flying model may be thought of as an analog computer with continuous and appropriate aerodynamic 
inputs (in the absence of Reynolds number or Mach number effects) for an infinite number of flight 
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maneuvers. This capability is extremely valuable in applications in which relatively small changes in angles 
of attack or sideslip result in large changes in aerodynamic  parameters and stability characteristics. When 
such abrupt changes occur, it can be very difficult to define the specific test conditions that need to be 
examined in conventional wind tunnel tests. 

After a gestation period to establish the credibility of results, NASA’s free­flight techniques have been 
directed toward evaluations and demonstrations of advanced concepts involving unconventional or radical 
aircraft configurations for which no experience base or design information is available. Another major area 
of application has been to evaluate the dynamic flight behavior of conventional aircraft operating at flight 
conditions that involve extremely complex aerodynamic phenomena for which conventional wind tunnel 
techniques or computational prediction methods have not yet been developed. Finally, many of the free­
flight model techniques evolved because it has been virtually impossible to replicate aircraft motions for 
certain areas of interest within conventional wind tunnels. Such motions include combinations of large­
amplitude angular or linear motions. 

After the NACA  and NASA  developed free­flight testing techniques and demonstrated their value in 
research and development projects, interest in applications quickly developed within the DOD, industry, 
other Government agencies, and academia. In recognition of the unique national testing capability provided 
by these techniques, the military services routinely requested high­priority dynamic model tests within 
NASA  facilities  to provide early assessments of the flight characteristics of new aircraft designs. In return 
for predictions of aircraft characteristics and problem­solving projects for the new configurations, DOD pro­
vides resources to the NACA and NASA for model fabrication of specific configurations, with the additional 
benefit to NASA  of retaining the models for in­house generic research and development activities. In addi­
tion, DOD provides NASA  personnel with opportunities to participate in full­scale flight­testing at its test 
sites and permits researchers  to access flight­test data that would otherwise be far beyond NASA’s funding 
capabilities. As a result of these interactions, researchers have participated in almost all DOD aircraft devel­
opment programs and have established the validity of their free­flight testing techniques while building a 
vast corporate knowledge of experience for many different aircraft configurations.2 

NASA  provides timely transmission of its results to industry through onsite visits to NASA  facilities, techni­
cal papers and reports, and industry tours. Industry is encouraged to cooperate in problems of mutual inter­
est in the area of flight dynamics and the use of free­flight models, and this relationship has been especially 
fruitful for industry during times when corporate research budgets have been tight and futuristic concepts 
do not meet with near­term managerial interests. Projects to be discussed herein resulted from generic 
NACA and NASA research, specific DOD requests, and joint projects with industry that involved the use of 
dynamically scaled free­flight models. 

In recent years, NASA  has made its historical series of technical reports available for download from its 
Internet site, and many reports that previously were very limited in distribution, classified, or difficult to  
obtain are now readily available at  http://ntrs.nasa.gov/search.jsp. The notes section of the present publica­
tion cites many of the papers that provide detailed information on the projects discussed herein, and addi­
tional searches for individual authors will provide substantially more material. In addition to having access 
to the NASA  report series, the reader will find supplementary information and discussions of the NASA  
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model results in recent texts on stability and control, such as the excellent book by Malcolm J. Abzug and 
E. Eugene Larrabee.3 

The following material presents an overview of the historical applications, lessons learned, and techno­
logical impacts of the use of free­flight models for studies of flight dynamics by the NACA  and NASA  in 
selected areas through the years. The material has been organized according to the following topics, with 
illustrative examples of research activities within each: 

• Dynamic stability and control. 

• Flight at high angles of attack. 

• Spinning and spin recovery. 

• Spin entry and poststall motions. 

• Associated aerodynamic tests. 

The discussion begins with a review of NACA  and NASA  applications of free­flight models to studies of 
the dynamic stability and control characteristics of a variety of aerospace vehicles across the speed range, 
from hovering flight at zero airspeed to hypersonic speeds. The research emphasis in such studies was to 
determine and analyze the dynamic flight motions of configurations within and at the edges of the design 
envelope. Next, applications of free­flight models in studies of advanced military and civil aircraft designs 
for critical high­angle­of­attack flight conditions are presented. Historically, flight at high angles of attack 
with attendant flow separation over the aircraft results in degradation of stability and control, which can lead 
to inadvertent spins and poststall gyrations. Numerous applications of dynamic models within the area of 
spinning and spin recovery technology are then discussed. The review then turns to applications in the 
areas of spin entry and poststall motions that require special outdoor test equipment and ranges. The dis­
cussions of applications conclude with overviews of aerodynamic test techniques that are normally per­
formed with the free­flight models to support the analysis of flight dynamics. 
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DYNAMIC STABILITY AND CONTROL  

Low-Speed Research 

Prior to the use of free-flight models, designers relied on qualitative guidelines for aircraft configurations 
and design details such as the areas required for vertical and horizontal tail surfaces. In some cases, 

simple theories  with broad assumptions were used to predict dynamic motions in response to pilot inputs. 
The NACA  approached flying model experiments with an awareness of potential scale effects that might be 
caused by the relatively low values of Reynolds number associated with small model tests. After establish-
ing the relative accuracy of results from model tests by correlation with full-scale vehicle experiences, a 
concentrated effort was undertaken to investigate and demonstrate the effects of configuration variables 
such as wing planform shape, tail configurations, and other geometric characteristics on the dynamic stabil-
ity and control characteristics of conventional aircraft designs. By combining free-flight testing with theory, 
the researchers were able to quantify desirable design features, such as the amount of wing-dihedral angle 
and the relative size of vertical tail. With these data in hand, methods were developed to theoretically solve 
equations of motion of aircraft and determine the dynamic stability characteristics such as the frequency of 
inherent rigid-body oscillations and the damping of those motions. 

When Langley  began operations of its 12-Foot Free-Flight Tunnel in 1939, high priority was placed on 
establishing correlation with full-scale flight results. Immediately, requests came from the Army and Navy 
for correlation of model tests with flight results for the North American BT-9, Brewster XF2A-1, Vought-
Sikorsky V-173, Naval Aircraft factory SBN-1, and Vought-Sikorsky XF4U-1. Meanwhile, the NACA  used a 
powered model of the Curtiss P-36 fighter for an in-house detailed calibration of the free-flight process.1 

The results of the P-36 study were, in general, in fair agreement with airplane flight results, but the 
dynamic longitudinal stability of the model was found to be greater (more damped) than that of the airplane, 
and the effectiveness of the model’s ailerons was less than that for the airplane. Both discrepancies were 
attributed to aerodynamic deficiencies of the model caused by the low Reynolds number of the tunnel test 
and led to one of the first significant modifications to the free-flight technique. The critical lesson learned in 
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Dynamic  stability  and  control  evaluation  of  the  Navy  Vought-Sikorsky  XF4U-1  Corsair  fighter  in  the  Langley  12-Foot  Free-Flight  Tunnel  in  
September  1940.  Early  testing  in  the  Free-Flight  Tunnel  concentrated  on  correlation  of  model  predictions  and  full-scale  results  for  
dynamic  stability  and  control  characteristics. 

this early study was that using the specific full-scale P-36 airfoil shape (NACA 2210  airfoil) for the model 
resulted in poor wing aerodynamic performance at the low Reynolds number of the model flight tests. In 
particular, a major degradation in lift characteristics was experienced for the 2210 airfoil shape. After this 
experience, researchers conducted an exhaustive investigation of other airfoils that would have satisfactory 
performance at low Reynolds  numbers. In planning for subsequent tests, the researchers were trained to 
anticipate the potential existence of scale effects for certain airfoils, even at relatively low angles of attack. 
As a result of this experience, the wing airfoils of free-flight tunnel models were frequently modified to airfoil 
shapes that provided better results at low Reynolds number. One specific airfoil substituted for some full-
scale wing airfoils in free-flight model testing was the Rhode St. Genese 35 section, which provided a high 
maximum lift coefficient at low Reynolds number.2  Even though the modified airfoil affected the fidelity of the 
predicted characteristics at lower angles of attack, researchers used this approach in attempts to match 
stall phenomena expected at high angles of attack and full-scale values of Reynolds number. 
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As early as the 1920s and 1930s, researchers in several wind tunnel and full-scale aircraft flight groups 
at Langley conducted analytical and experimental investigations to develop design guidelines ensuring 
satisfactory stability and control behavior.3  The objective of such studies was to reliably predict the inherent 
flight characteristics of aircraft as affected by design variables such as the wing-dihedral angle, size and 
locations of the vertical and horizontal tails, wing planform  shape, engine power, mass distribution, and 
control surface geometry. The staff of the Free-Flight Tunnel joined in these efforts with several studies that 
correlated the qualitative behavior of free-flight models with analytical predictions of dynamic stability and 
control characteristics. For example, flight tests of models with excessive wing-dihedral angles dramatically 
confirmed analytical predictions of undesirable large-amplitude Dutch roll yawing and rolling motions, which 
were difficult or impossible to control. In other studies, the vertical tail was increased in size, and a marked 
degradation in the dynamic directional stability was noted, as predicted by the analytical studies. In particu-
lar, as the tail size became excessive, the free-flight model exhibited spiral instability, which demanded 
constant attention and corrective control from the pilot to prevent crashes. Coupled with the results from 
other facilities and analytical groups, the free-flight results accelerated the maturity of design tools for future 
aircraft from a qualitative basis to a quantitative methodology, and many of the methods and design data 
derived from these studies became classic textbook material.4 

NACA  free-flight  study  of  the  effect  of  negative  wing  dihedral.  Note  the  large  nega-
tive  dihedral  angle  (15  degrees)  of  the  wing.  Simple  generic  models  were  used 
in  flight  studies  of  the  effects  of  variations  in  geometric  design  variables  such  as  
dihedral  angle,  tail  size,  and  center-of-gravity  location.  Based  on  the  results,  
design  guidelines  were  formulated. 

Other factors influencing the dynamic 
stability of aircraft also received atten-
tion during studies in the Free-Flight 
Tunnel. Fundamental investigations of 
the effect of mass distribution were con-
ducted as designers began to increase 
the spanwise distribution of weight 
through multiengine configurations and 
flying wing or tailless designs.5  Again, 
the research staff very successfully cou-
pled free-flying model tests with analyti-
cal predictions of model behavior. In 
another example of investigations of the 
effects of physical phenomena on 
dynamic stability and control, the effects 
of fuel sloshing in unbaffled fuel cells 
was explored in the Free-Flight Tunnel.6  
Design trends after World War II had led 
to enlarged fuselage fuel tanks on high-
performance aircraft, and considerable 
concern had developed over the poten-
tial adverse coupling of fuel motions with inherent aircraft dynamic modes of motion to cause degradation 
of flying qualities. Flight tests of a simple model equipped  with liquid-filled spherical fuselage tanks were 
used to investigate the motion coupling phenomena. The erratic, jerky flight motions of the free-flight model 
used in the study clearly demonstrated the potential for highly unacceptable flight characteristics that could 
result if a designer did not appreciate control of internal fuel movements by baffling. 
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As high-performance aircraft configura-
tions evolved in the early 1950s, the rela-
tive length of the fuselage forebody 
became much longer compared with air-
craft of World War II, and in some cases, 
the cross-sectional shape of the forebody 
changed from a traditional circular or 
slab-sided shape to a shape having a 
relatively flat  oval  cross  section  with  the 
major  cross-sectional  axis  horizontal. 
These  design  trends  resulted  in  large 
impacts  on  aircraft  dynamic  stability  and 
control.  The  staff  of  the  Free-Flight  Tunnel 
had  encountered  an  unconventional  aero-
dynamic  characteristic  related  to  these 
features  when  testing  a  canard-type  con-
figuration  in  the  late  1940s.  During  those 
tests,  the  canard-fuselage  combination 
was  directionally  unstable  at  low  angles  of 
attack  but  became  stable  at  high  angles  of 
attack,  at  which  sidewash  from  the  canard  caused  a  flow  reversal  on  the  fuselage  so  that  the  combination 
became  directionally  stable.7  As  researchers  anticipated  similar  effects  for  radical  oval  fuselage  cross-
sectional  shapes,  programs  were  carried  out  with  models  in  the  Free-Flight  Tunnel,  leading  to  a  compilation 
of  data  and  design  information.  As  high-performance  U.S.  military  aircraft  have  evolved,  flattened  fuselage 
forebodies  have  become  commonplace  for  fighters  (such  as  the  Northrop  F-5  series),  and  the  fundamental 
understanding  derived  from  the  free-flight  model  research  of  the  1950s  has  proven  to  be  valuable  guidance 
for  aircraft  development  programs  to  this  day. 

Side  and  front  sketches  of  the  free-flight  model  used  in  the  fuel  sloshing  inves-
tigation.  Spherical  fuselage  tanks  containing  various  levels  of  water  were  used 
to  simulate  various  arrangements  of  fuel  loading  and  sloshing  characteristics. 

During  the  final  model  flight  projects  in  the  Free-Flight  Tunnel  in  the  mid-1950s,  various  Langley  organiza-
tions  teamed  to  quantify  the  effects  of  critical  aerodynamic  dynamic  stability  parameters  on  flying  character-
istics.  These  efforts  included  correlation  of  experimentally  determined  aerodynamic  stability  derivatives  with 
theoretical  predictions  and  comparisons  of  the  results  of  qualitative  free-flight  tests  with  theoretical  predic-
tions  of  dynamic  stability  characteristics.  In  some  cases,  rate  gyroscopes  and  servos  were  used  to  artificially 
vary  the  magnitudes  of  dynamic  aerodynamic  stability  parameters,  such  as  yawing  moment  caused  by  roll-
ing.8  In  these  studies,  the  free-flight  model  result  served  as  a  critical  test  of  the  validity  of  theory. 

High-Speed Research: Rocket-Propelled Models 

During  World  War  II,  tactical  maneuvers  pushed  fighter  operations  into  the  relatively  unknown  realm  of  aerody-
namic  compressibility,  where  new  stability  and  control  problems  emerged.  High-speed  dives  from  high  altitudes 
by  fighter  pilots  had  resulted  in  potentially  catastrophic  phenomena  characterized  by  excessive  stick  forces  and 
loss  of  control  in  vertical  dives.  The  onset  of  compressibility  effects  demanded  new  methods  of  analysis,  and  the 
NACA  responded  by  developing  applications  of  free-flight  models  to  investigate  dynamic  stability  and  control 
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characteristics  at  transonic  and  supersonic  conditions.  As  mentioned  earlier,  in  the  1940s,  no  wind  tunnels  had 
been  developed  that  avoided  the  choking  phenomenon  that  contaminated  aerodynamic  data  measurements 
near  Mach  1,  and  the  NACA  developed  three  alternate  approaches  to  obtain  transonic  data.  Langley  used  
the  drop-body,  wing-flow,  and  rocket-model  techniques  to  provide  pioneering  information  on  the  transonic  void. 

In 1945, Langley began launching rocket-powered models at its Wallops flight research station to obtain 
transonic and supersonic information on the performance,  stability, and control of generic and specific air-
craft configurations. The scope and contributions of the Wallops rocket-powered model research programs 
for aircraft configurations, missiles, and airframe components covered an astounding number of technical 
areas, including aerodynamic performance, flutter, stability, control, heat transfer, automatic controls, 
boundary-layer control, inlet performance, ramjets, and separation behavior. Even a cursory discussion of 
these results far exceeds the intent of this book, which focuses on dynamic stability and control. The inter-
ested reader is, however, referred to the excellent detailed  summary of the history and aeronautical contri-
butions of the Wallops Island Flight Test Range by Joseph Shortal.9 

In addition to providing extensive data via telemetry in 
several technical disciplines for high-speed conditions, the 
rocket-powered model tests provided a remarkable amount 
of information on dynamic stability and control. For exam-
ple, in just 3 years beginning in 1947, over 386 models were 
launched at Wallops to evaluate roll control effectiveness at 
transonic conditions. These tests included generic configu-
rations as well  as models with wings representative of the 
now-famous Douglas D-558-II Skyrocket, Douglas X-3 Sti-
letto, and Bell X-2 research aircraft. Results on roll control 
effectiveness at high speeds included pioneering measure-
ments of a severe reduction in rolling effectiveness because 
of aeroelastic wing effects and the phenomenon in which a 
complete reversal of intended  roll control direction occurred 
at transonic speeds caused by the aerodynamic behavior of 
the wing trailing-edge angle.10  Fundamental studies of 
dynamic stability and control were also conducted with 
generic research models to study basic phenomena such 
as longitudinal trim changes, dynamic longitudinal stability, 
control-hinge moments, and aerodynamic damping in roll.11  
Studies with models of the D-558-II also detected unex-
pected coupling of longitudinal and lateral oscillations, a 
problem that would subsequently prove to be common for 
configurations with long fuselages and relatively small 
wings.12  Similar coupled motions caused great concern in 
the X-3 and F-100 aircraft development programs and 
spurred on numerous studies of the phenomenon known as 
inertial coupling. 

Model  of  the  Chance  Vought  F8U  used  by  the  Langley 
Pilotless  Aircraft  Research  Division  at  its  Wallops  flight 
station  in  rocket-launched  model  tests  to  determine  
supersonic  dynamic  stability. 
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Military requests for rocket-powered model tests in support of high-priority national programs quickly 
flooded Wallops. The staff made almost continual contributions to the famous aircraft programs of the 
1950s. Tests included a series of models of the then-radical XF-92A  delta wing airplane.13  Using NACA-
developed instrumentation and telemetry, the test crew at Wallops delivered exceptionally high-quality data 
on dynamic stability and trim of the XF-92A, resulting in the first-ever predictions of flying qualities based on 
rocket-model tests. Subsequent results from full-scale airplane flight tests were found to be in good agree-
ment with those obtained from the model studies. In another example, a request from the Navy asked for 
an evaluation of an unorthodox horizontal-tail control arrangement planned for the Grumman XF10F-1  
Jaguar variable-sweep transonic fighter. Rocket-model tests discovered a dynamic instability of the tail 
surface near Mach 1, as well as a severe directional instability that necessitated the use of ventral fins for 
the full-scale airplane.14  More than 20 specific aircraft configurations were evaluated during the Wallops 
studies, including early models of such well-known aircraft as the Douglas F4D Skyray, the McDonnell F3H 
Demon, the Convair B-58 Hustler, the North American F-100 Super Sabre, the Chance Vought F8U Cru-
sader, the Convair F-102 Delta Dagger, the Grumman F11F Tiger, and the McDonnell F-4 Phantom II. 

The rocket-powered model test technique was not without its detractors. Because each launch resulted 
in the loss of an expensive model and instrumentation, many of the Langley high-speed wind tunnel staff 
organizations resented the impact of the rocket model activity on fabrication schedules for model shops and 
funding for model construction.15  The growing tension between the groups was finally dissipated in 1958, 
when the NACA  was absorbed by NASA, and the missions of the Wallops and Langley rocket-powered 
model research organizations were diverted to the space program. 

Supersonic Tests at Ames 

The quest for high-speed testing techniques at the NACA  Ames Laboratory included the development of 
the Supersonic  Free-Flight Tunnel (SSFT) for observing flow fields, shock waves, and dynamic stability 
exhibited by models launched upstream into a supersonic tunnel flow. Extremely valuable studies of the 
static and dynamic stability of blunt-nose reentry shapes, including analyses of boundary-layer separation, 
were conducted in pioneering research efforts. This work included studies of the supersonic dynamic stabil-
ity characteristics of the Mercury capsule. Spurred on by the experimental observation of nonlinear varia-
tions of pitching moment with angle of attack typically exhibited by blunt bodies, Ames researchers contrib-
uted a mathematical method for including such nonlinearities in theoretical analyses and predictions of 
capsule dynamic stability at supersonic speeds.16  During the X-15 research airplane program, Ames con-
ducted free-flight testing in the supersonic free-flight facility to define stability, control, and flow-field charac-
teristics of the configuration at supersonic speeds.17 

Unconventional Configurations 

Along with the evolving low- and high-speed free-flight analysis capability, progress in other experimental 
and theoretical procedures rapidly advanced the understanding and prediction of stability and control  
for conventional configurations. Simultaneously, theoretical methods for predicting the dynamic stability  
of longitudinal  and lateral-directional motions and the effects of control system architecture led to  
advances in design methods, to the point that textbook design procedures are now adequate for most  



53     

Supersonic  free-flight  test  of  a  model  of  the  X-15  research  airplane  in  the  Ames  Supersonic  Free-Flight  Facility.  The  locations  of  shock 
waves  emanating  from  the  fuselage,  wing,  and  tail  of  the  model  are  crisply  defined  by  the  shadowgraph  technique. 

current conventional aircraft development programs. As a result, free-flight dynamic stability testing by the 
NACA  and NASA  for conventional aircraft operating in attached-flow conditions within the flight envelope 
has been very limited. However, a continual introduction of radical aircraft designs for which no experience 
base exists has challenged designers and focused free-flight applications toward the unconventional  
configurations. Many of these strange designs were so revolutionary that they generated considerable 
doubt as to their capability to sustain controlled flight. Arguably, the most valuable contributions of free-flight 
testing have occurred for these types of vehicles. 

The Early Days 

Almost immediately after the Langley 12-Foot Free-Flight Tunnel became operational in the 1930s, its 
unique free-flight capabilities were directed at early assessments of extremely radical, unconventional  
aircraft designs. By using relatively inexpensive balsa models powered by electric motors, Langley  
researchers were able to quickly identify major problems,  conceive potential solutions, and evaluate the 
success of modifications. 

CHAPTER 4: DYNAMIC STABILITY AND CONTROL 



54 MODELING FLIGHT  

One of the first radical aircraft configura-
tions to be evaluated by the NACA  free-flight 
technique in 1939 was the Vought-Sikorsky 
V-173 “Flying Pancake,” which had been 
designed by Charles Zimmerman, the chief 
advocate and inspiration for the Langley free-
flight facilities. Zimmerman, a leading 
researcher at Langley, had departed in 1937 
for Vought, where he proceeded to pursue his 
concept of a low aspect ratio wing configura-
tion with superior short takeoff and landing 
capability. The results of the first evaluation 
flights of a 0.086-scale model of his V-173 
design in the Free-Flight Tunnel at Langley 
were dreadful.18  In fact, the dynamic stability 
and controllability of the configuration were so 
poor that modifications were deemed manda-
tory before additional testing would be permit-
ted in the tunnel. When the configuration was 
changed to incorporate outboard horizontal 
tails, larger vertical tails, and a revised lateral 
control scheme, the model could be easily 
flown, and the Navy sponsors  of the program 
were encouraged to proceed to full-scale 
flight-testing. Flights of the revised model and 
Zimmerman’s other models resulted in con-
tinued development of the concept. Highly 
successful flight-testing of the V-173 during 
1942 and 1943 led to development of a sec-
ond-generation “Zimmer Skimmer,” known as 
the XF5U-1, which arrived too late on the 
scene at the end of World War II and was can-
celed in 1947. 

Original  unpowered  free-flight  model  configuration  of  the  V-173  “Flying 
Pancake”  as  it  entered  testing  in  the  Langley  12-Foot  Free-Flight  Tunnel 
in  1939.  Initial  test  results  were  very  unsatisfactory  and  required  extensive 
redesign  of  the  tails  and  control  surfaces. 

After  modifications  suggested  by  powered  free-flight  model  tests  at  Lang-
ley,  the  V-173  full-scale  aircraft  was  successfully  flown  and  demonstrated 
outstanding  short-field  capability. 

Free-flight  model  of  the  Northrop  N-9M  used  in  dynamic  stability  studies  in 
the  12-Foot  Free-Flight  Tunnel.  The  test  was  the  first  of  a  series  of  studies 
of  tailless  designs  that  led  to  a  NACA  summary  report.  Shown  here  without 
propellers,  the  model  was  also  tested  for  powered  conditions. 

In the late 1930s, Jack Northrop’s advocacy 
for flying wing aircraft designs stoked consid-
erable interest within the aeronautical com-
munity. However, immediate concern existed 
over the potential stability and control prob-
lems to be encountered with such tailless 
configurations. Within the NACA, specialists 
had anticipated potential problems in the 
areas of yaw control, directional stability, 
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poststall gyrations, and nose-wheel lift-off speeds for takeoff. In 1941, therefore, the U.S. Army Air Forces 
requested free-flight tests of the radical Northrop N-9M flying wing configuration in the Free-Flight Tunnel. 
After a thorough evaluation of the N-9M, a series of flying wing designs was tested, including the Northrop 
XP-56 “Black Bullet,” which was found to have an inadequate-sized vertical tail and poor high-lift capability. 
During the ensuing decade, a vast amount of NACA  generic research was directed at tailless configura-
tions, and the military services requested free-flight model tests of a large number of specific tailless aircraft 
designs that emerged during that time. For example, the free-flight group at Langley conducted tests of an 
extremely radical tailless design known as the Kaiser Cargo Wing, a giant flying boat configuration that had 
been jointly conceived by Howard Hughes and Kaiser. The NACA  organizations issued a collaborative sum-
mary report on the stability and control characteristics of tailless configurations, including design guidelines 
for future aircraft.19 

The introduction of the swept-back wing concept for high-speed drag reduction resulted in a tremendous 
impact in the field of stability and control. Although they greatly benefitted high subsonic and transonic 
speed performance, swept wings exhibited very poor low-speed aerodynamic behavior as a result of span-
wise flow at moderate angles of attack, resulting in wingtip stall and longitudinal instability in the form of 
“pitch-up.” NACA  aerodynamicists at Langley and Ames conducted numerous experimental studies to 
develop wing modifications and high-lift concepts to minimize or eliminate this problem. In support of this 
effort, the Langley 12-Foot Free-Flight Tunnel was used to assess the effects of modifications to the lead-
ing-edge configuration of the swept wing. Results of these tests were refined and summarized in design 
methods for calculating dynamic stability and for estimating aerodynamic stability derivatives.20 

The capture of the German Lippisch DM-1 delta wing glider by advancing American army forces at the 
end of the war further stimulated a growing U.S. interest in delta wing configurations for future high-speed 
military aircraft. Full-Scale Tunnel tests of the DM-1 at Langley in 1946 inspired widespread wind tunnel 
testing and theoretical aerodynamic studies in several organizations. Free-flight model studies of the 
dynamic stability and control characteristics of delta wing designs were conducted in the Free-Flight  
Tunnel, including an investigation of the Consolidated Vultee (later Convair) XF-92, which was the first U.S. 
delta wing fighter. During the precursor testing of the DM-1, NACA  researchers had developed an under-
standing of the beneficial effects on maximum lift caused  by vortex flows generated by relatively sharp 
leading edges and shed over the wing at high angles of attack. In the free-flight tests, these beneficial 
effects were also noted, in that the model could be flown to very high angles of attack compared with 
designs with moderately swept wings; however, a violent directional instability was encountered near max-
imum lift. These dynamic flight results were some of the earliest warnings of potentially degrading vortex 
flow effects on stability and control at extreme angles of attack. In addition, the model flights indicated that 
the XF-92’s delta wing exhibited pitch-up tendencies at moderate angles of attack, requiring the use of 
upper-surface wing fences to prevent the instability. The general research conducted on free-flight delta 
wing models culminated in rocket-powered model-testing of the Convair F-102 configuration at Wallops and 
low-speed assessments of the design at Langley in the Free-Flight Tunnel.21 

During World War II, several U.S. and foreign aircraft were designed with unorthodox forward-swept 
wings, with the objectives of either solving longitudinal center-of-gravity location problems or providing 
more satisfactory low-speed stall characteristics than those exhibited by aft-swept wings. In contrast to 
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aft-swept wings, which tend to stall at the wingtip, forward-swept wings tend to retain attached flow at the 
wingtips, thereby maintaining  roll control capability of conventional aileron surfaces to high angles of attack. 
However, the forward-swept wing will tend to stall at the wing root, requiring special consideration in the 
design process to alleviate undesirable longitudinal stability or trim changes. Researchers at Langley con-
ducted generic  and exploratory studies of the stability and control characteristics of this type of configura-
tion in several wind tunnels, beginning in 1946 with an exploratory conventional static force-test study of 
variable-sweep version of the X-1 research airplane in the Langley 300 mph 7- by 10-Foot Tunnel.22  In view 
of the unconventional aerodynamic behavior of forward-swept configurations, the staff of the Free-Flight 
Tunnel was requested to evaluate the flying characteristics of several forward-swept configurations, includ-
ing the Convair  XB-53 bomber, the Cornelius XFG-1 fuel glider, and the Air Material Command MCD-387-A  
fighter.23 Over 30 years later, the forward-swept wing X-29 configuration would undergo free-flight testing in 
the Full-Scale Tunnel. Results of that project will be discussed in a later section. 

Top view of the model of the Convair XB-53 forward-swept wing bomber tested in the Free-Flight Tunnel. The aircraft incorporated a 
30-degree swept-forward wing and was tested in several facilities at Langley but did not enter production. 
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In 1945, military planners became concerned that the emerging Cold War and the strategic threat of the 
Soviet Union would severely tax the response capability of the U.S. long-range bomber fleet. In particular, 
the requirement for improving the defensive capability of large aircraft such as the Convair B-36 led to 
exploration of a parasitic fighter concept in which a small fighter would be carried within the B-36 mother 
ship and deployed during defensive engagements. After an industry design competition, the Air Force chose 
the McDonnell XP-85 design  for the mission, 
and Langley was requested to perform dynamic 
stability and control assessments of the XP-85 
during free-flight tests, which included simulated 
deployments to and from a trapeze in the bomb 
bay of the B-36. Results of the model tests indi-
cated the potential for wild gyrations of the air-
craft on the trapeze during power-on conditions, 
and recommendations were made to the Air 
Force regarding the launch and recovery proce-
dures to avoid stability and control issues.24  Dur-
ing the first full-scale attempt to engage the tra-
peze after a successful launch from a converted 
B-29 bomber at Edwards Air Force Base, the 
XP-85 hit the trapeze structure, resulting in an 
emergency landing of the damaged airplane on 
the desert. The program was canceled in 1949 
when air-to-air refueling for fighter escorts 
became a viable concept. 

Free-flight  model  of  the  McDonnell  XP-85  airplane.  Note  the  hinges 
for  the  folding  wings,  which  were  designed  to  permit  carriage  within 
the  bomb  bay  of  the  B-36  mother  ship,  and  the  fuselage  hook  used  to  
engage  a  trapeze  in  the  bay  of  the  B-36. 

The  wingtip-coupling  concept  was  studied  in  several  dynamic  stability  inves-
tigations  in  the  Free-Flight  Tunnel.  Critical  parameters  for  stability  and  control 
such  as  the  fore-and-aft  location  of  the  parasite  fighters  on  the  bomber’s  wing 
tips  were  identified. 

As the war in the Pacific approached its final stage, interest arose over concepts to extend the range of 
bomber aircraft and their protective escorts. Industry design teams explored the relative magnitude of aero-
dynamic drag reduction associated with joining the wingtips of bombers and escorting fighters via tip-hinge 
arrangements. The resulting  increase in 
effective aspect ratio for the three aircraft 
was promising, and the use of a hinged 
coupling between the aircraft relieved the 
structural bending loads produced by the 
aerodynamic and mass properties of the 
fighter aircraft. However, concern over 
potential aeroelastic and dynamic stability 
and control issues that might be experi-
enced in flight represented a major road-
block to the concept. Several  generic free-
flight model studies were conducted in the 
Free-Flight Tunnel at Langley to evaluate 
the effects of geometric details of the wing-
tip hinge arrangement on dynamic stability 
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and control, as well as the effectiveness of 
artificial stabilization systems.25  The U.S. Air 
Force sponsored several wingtip-coupling 
experiments in the early 1950s using B-29 
and B-36 mother ships, with F-84 and RF-84 
aircraft as parasitic escorts. The last Air 
Force wingtip-coupling flight experiment in 
1956 was known as Project Tom-Tom and 
used B-36/RF-84F aircraft. The NACA  sup-
ported this activity with dynamic (not free-
flight) hinged-model tests in the Langley 
19-Foot Pressure Tunnel. After a series of 
fatal and near-catastrophic in-flight inci-
dents, the hazards of operational usage of 
wingtip coupling resulted in a reduction in 
interest in the concept. Demonstration of the 
practicality of emerging in-flight refueling 
techniques for extended range missions was 
the final blow to the complex tip-coupling 
approach. 

Unconventional  configurations  are  in  evidence  as  John  P.  Campbell,  head 
of  the  Free-Flight  Tunnel,  presents  a  lecture  to  visiting  aeronautical  engi-
neers  in  1946.  Campbell  is  describing  the  operation  of  the  tunnel  with  a  scale 
model,  while  the  charts  and  models  depict  just  a  few  of  the  radical  designs 
studied  in  free-flight  tests. 

Many  noted  figures  in  aviation  history  visited  Langley  facilities.  In  this  pho-
tograph,  Gen.  James  H.  “Jimmy”  Doolittle  completes  an  inspection  of  the 
Free-Flight  Tunnel  after  a  lecture  by  the  tunnel  staff  in  1946. 

By the time the wind tunnel free-flight 
model technique was transferred from the 
Free-Flight Tunnel to the Langley Full-Scale 
Tunnel in 1959, the interest in model flight 
tests to determine the dynamic stability and 
control of unconventional designs was pros-
pering during an age of aeronautical innova-
tion, and a seemingly endless parade of 
radical designs required analysis. 

V/STOL Configurations 

Inspired  by  the  demonstrated  capabilities  of  early  helicopters,  the  international  aviation  community  became 
interested  in  the  late  1940s  in  vertical  take-off  and  landing  (VTOL)  aircraft.  Around  the  world,  design  teams 
aspired  to  create  VTOL  configurations  with  the  capability  of  helicopter-like  hovering  flight  but  with  cruise 
speeds  much  higher  than  those  of  helicopters.  The  potential  advantages  of  VTOL  operations  for  military  appli-
cations  included  a  more  rapid  reaction  time  for  rescue  of  downed  aircrews,  dispersal  of  aircraft  operational 
sites  away  from  easily  targeted  fixed  runways,  and  the  ability  to  operate  on  land  near  the  battle  area  or  on 
small  ship-borne  landing  pads  instead  of  potentially  vulnerable  aircraft  carriers.  Interest  in  VTOL  and  in  verti-
cal/short  take-off  and  landing  configurations  escalated  during  the  1950s  and  persisted  through  the  mid-1960s, 
with  a  huge  number  of  radical  propulsion/aircraft  combinations  proposed  and  evaluated  throughout  industry, 
DOD,  NACA,  and  NASA.  The  multitude  of  configurations  initially  included  vertical-attitude  “tail  sitters,” 



59     

followed  by  an  amazing  variety  of  horizontal-attitude  designs  that  used  several  propulsion  concepts  to  achieve 
hovering  flight  and  the  conversion  to  conventional  forward  flight.  Tilting  wings,  rotating  shrouded  propellers  or 
ducts,  vectored  nozzles,  deflected  slipstream  flaps,  lift  fans  with  vectored  louvers,  and  thrust-augmented 
cavities  emerged  as  possible  propulsion  concepts.  However,  all  these  concepts  were  plagued  with  common 
issues  regarding  stability,  control,  and  handling  qualities  that  were  experienced  in  flight.26 

The  extent  of  research  and  development  for  V/STOL  aircraft  over  the  years  within  the  United  States  by  
Government  agencies,  industry,  and  DOD  has  amounted  to  a  huge  investment  in  resources,  including  wind 
tunnel  studies,  piloted  simulator  assessments,  and  flight  research  evaluations.  The  details  of  these  activities 
are  far  beyond  the  intent  of  the  present  material,  which  is  necessarily  limited  to  highlights  involving  the  use  of 
dynamically  scaled  free-flight  models  by  the  NACA  and  NASA  in  coordinated  programs  with  DOD  and  industry. 

The first VTOL  nonhelicopter concept to capture the interests of the U.S. military was the vertical-attitude 
tail-sitter concept. The postwar discovery that German 
Focke-Wulf engineers had studied a tail-sitter concept 
known as the “Triebflugel” (thrust wing) vertical-attitude 
fighter in 1944  was a major stimulus for this interest. The 
Focke-Wulf paper study featured three unswept wing pan-
els that were powered by wingtip-mounted ramjets and 
rotated around  the fuselage at incidence to provide lift for 
vertical takeoff. In 1947, the Air Force and Navy initiated 
an activity known as Project Hummingbird that requested 
design approaches for vertical take-off aircraft. At Langley, 
discussions with Navy managers led to exploratory evalu-
ations of simplified free-flight, tail-sitter models to evaluate 
stability and control during hovering flight in 1949. Con-
ducted in a large open area within a building, powered-
model testing enabled researchers to assess the dynamic 
stability and control of such configurations.27  The test 
results provided extremely valuable information on the 
relative severity of unstable oscillations encountered dur-
ing hovering flight. The instabilities in roll and pitch were 
caused by aerodynamic interactions of the propeller during 
forward or sideward translation, but the period of the grow-
ing oscillations was sufficiently long to permit relatively 
easy control. The model flight tests also provided guidance 
regarding the level of control power required for satisfac-
tory maneuvering during hovering flight. 

The  first  NACA  exploratory  tail-sitter  VTOL  free-flight  
model.  Powered  by  an  electric  motor,  the  model  was  flown 
in  hovering  flight  in  a  large  open  building  for  evaluations 
of  its  inherent  dynamic  stability  and  the  controllability  of 
instabilities. 

Navy interest in the tail-sitter concept led to contracts for 
the development of the Consolidated Vultee (later Convair) 
XFY-1 “Pogo” and the Lockheed XFV-1 “Salmon” tail-sitter 
aircraft in 1951. The Navy requested that Langley conduct 
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dynamic  stability  and  control  investigations  of  both  configurations  using  its  free-flight  model  test  techniques. 
In  1952,  hovering  flights  of  the  Pogo  were  conducted  within  a  large  area  in  the  return  passage  of  the  Langley 
Full-Scale  Tunnel,  followed  by  transition  flights  from  hovering  to  forward  flight  in  the  tunnel  test  section  during 
a  brief  break  in  the  tunnel’s  busy  test  schedule.28  Observed  by  Convair  personnel  (including  the  XFY-1  test 
pilot),  the  flight  tests  provided  encouragement  and  confidence  to  the  visitors  and  the  Navy.  An  important  out-
put  from  the  transition  tests  in  the  tunnel  was 
the  recognition  that  instabilities  encountered 
during  the  relatively  long  time  required  to 
increase  the  tunnel  speed  during  the  transi-
tion  would  probably  be  minimized  during 
more  realistic  unconstrained  transition 
maneuvers,  which  would  require  much  less 
time.  Langley  researchers  conducted  addi-
tional  rapid-transition  free-flight  tests  at  the 
Langley  Control  Line  Facility  (CLF).  As 
expected,  the  rapidity  of  the  transition 
maneuver  made  the  pilot’s  task  much  easier 
at  the  control-line  facility.29  As  a  result  of 
experiences  with  the  XFY-1  model,  other 
NASA  VTOL  free-flight  tests  were  conducted 
using  the  CLF,  including  the  X-13  tail-sitter, 
the  Hawker  P.1127vectored-thrust  configura-
tion,  and  the  VZ-2  tilt  wing  design.30 

Flight  studies  of  the  stability  and  control  characteristics  of  the  Convair  XFY-
1  were  conducted  in  the  Langley  Full-Scale  Tunnel.  Note  the  flexible  flight 
cable,  the  one-eighth-inch  steel  safety  cable,  and  the  wire  propeller  guard. 

NACA’s  support  for  the  Lockheed  XFV-1 
tail-sitter  program  included  free-flight  model 
testing  in  both  the  Langley  Full-Scale  Tunnel 
and,  for  the  first  time,  the  Ames  40- by 
80-Foot  Tunnel.31  The  tests  at  Ames  required 
the  development  of  a  testing  technique  for 
the  closed-throat  test  section  of  the  40- by 
80-Foot  Tunnel  and  the  use  of  a  9.5-foot-
long,  250-pound  free-flight  model.32  In  addi-
tion  to  providing  pilot  inputs,  the  control  sys-
tem  included  artificial  damping  in  pitch,  roll, 
and  yaw.  The  model  was  powered  by  electric 
motors  and  included  a  trailing  flight  cable. 
The  hovering  flight  evaluations  were  con-
ducted  in  the  return  passage  of  the  tunnel 
near  the  contraction  cone  with  three  safety 
cables  attached  to  the  wingtips  and  nose  of 
the  model,  and  personnel  were  stationed  to 
disperse  the  lines  via  a  high-speed  winch. 

Test  setup  for  hovering  flights  of  a  large  free-flight  model  of  the  Lockheed 
XFV-1  in  the  return  passage  of  the  Ames  40- by  80-Foot  Tunnel. 
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In  contrast  to  tests  at  Langley,  the  Ames  setup  used 
only  a  single  pilot  and  a  model-power  operator.  For  the 
transition  flights,  the  model  was  flown  in  the  test  section, 
and  the  test  crew  was  stationed  outside  the  wind  tunnel, 
with  the  exception  of  the  two-member  tether  crew.  The 
pilot’s  field  of  vision  was  somewhat  restricted,  because 
he  was  outside  the  tunnel  and  had  to  observe  the  model 
motions  through  test  section  windows.  This  unique  inves-
tigation  provided  information  on  the  necessary  flight  con-
trol  system  characteristics  and,  along  with  the  testing  at 
Langley,  provided  confidence  to  the  Navy  sponsors  that 
the  configuration  could  be  controlled  in  VTOL  operations. 
To  the  author’s  knowledge,  the  XFV-1  free-flight  tests 
have  been  the  only  free-flight  tests  conducted  in  the 
Ames  tunnel.  Because  the  Ames  40- by  80-Foot  Tunnel 
provided  higher  test  speed  capabilities  and  was  the 
Nation’s  premier  subsonic  wind  tunnel  for  full-scale  con-
figurations,  it  was  used  as  the  primary  NACA  and  NASA  
large  low-speed  test  facility  for  conventional  testing, 
whereas  the  Langley  Full-Scale  Tunnel  was  the  primary 
facility  for  free-flight  testing  of  subscale  models. 

Setup  for  free-flight  transition  tests  of  XFV-1  model  in  the 
Ames  40- by  80-Foot  Tunnel. 

Although the tail-sitter VTOL  concept was success-
fully demonstrated during free-flight model studies and 
flight demonstrations of full-scale aircraft such as the 
Convair XFY-1 and Ryan X-13, a multitude of opera-
tional issues were encountered that limited the opera-
tional feasibility of the concept, and the engineering 
community abandoned the tail-sitter approach. Chief 
among these problems was the unsatisfactory situation 
of having the pilot positioned in a reclined attitude during 
vertical take-offs and landings, resulting in impaired 
vision and lack of visual cues for landing. This visual 
shortcoming proved to be the most serious inherent 
deficiency in the tail-sitter concept and led to widespread 
disinterest during the 1960s, when new horizontal-atti-
tude concepts appeared as candidates for V/STOL   
missions. 

Langley’s  version  of  a  hypothetical  YF-17  “Woodpecker” 
VTOL  fighter.  Based  on  an  installed  thrust-to-weight  ratio  of 
over  1,  a  fly-by-wire  flight  control  system,  and  a  tiltable  cock-
pit,  the  design  would  take  off  and  land  on  a  vertical  platform 
using  a  hook-and-bar  arrangement.  It  could  also  conduct 
take-offs  and  landings  from  runways  during  conventional 
operations.  The  sequence  shows  conversion  from  hovering 
flight  to  conventional  flight  in  the  Full-Scale  Tunnel. 

In  the  1970s,  the  emergence  of  the  General  
Dynamics  YF-16  and  Northrop  YF-17  lightweight  fighter 
prototypes  inspired  Langley  researchers  to  reexamine  the 
tail-sitter  concept.33  As  originally  conceived,  these  highly 
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maneuverable prototypes had thrust-to-weight ratios greater than 1 and included fly-by-wire flight control 
systems without traditional control linkages and hardware. NASA  researchers theorized that the use of fly-
by-wire might permit the possibility of maintaining the pilot in a conventional horizontal attitude using a 
rotatable cockpit arrangement, and they evaluated the dynamic stability and control characteristics of 
research versions of each of the lightweight fighters, known as VTOL “Woodpecker” concepts. 

Highly successful hovering and transition flights to and from conventional wing-borne flight were con-
ducted for the modified YF-16 and YF-17 models in the Full-Scale Tunnel, and results were briefed to 
industry and DOD. Grumman, which had been following the NASA  experiments, pursued a refined version 
of the basic concept in a project known as the “Nutcracker,” which was to be a 21,500-pound, turbofan-
powered Navy antisubmarine aircraft. Grumman built and flight-tested a radio-controlled model and suc-
cessfully demonstrated the docking procedure for take-off and landing.34 

NASA  free-flight  model  of  the  Hawker  P.1127  VTOL  airplane  hovers  in  the  return  passage  of  the  Full-Scale  Tunnel.  Free-flight  tests  and 
transonic  propulsion  integration  tests  in  the  Langley  16-Foot  Transonic  Tunnel  were  key  contributions  to  the  successful  development 
of  the  airplane. 
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Without doubt, the most successful NASA  application of free-flight models for VTOL  research was in sup-
port of the British P.1127 vectored-thrust fighter program. As the British Hawker Aircraft Company matured 
its design of the revolutionary  P.1127 in the late 1950s, Langley’s management became staunch supporters 
of the activity and directed that tests in the 16-Foot Transonic Tunnel and free-flight research activities in 
the Full-Scale Tunnel be used for further development work.35  In response to the directive, a one-sixth-scale 
free-flight model was flown in the Full-Scale Tunnel to examine the hovering and transition behavior of the 
design.36  Results of the free-flight tests were very impressive and were witnessed by Hawker staff mem-
bers, including the test pilot slated to conduct the first transition flights. The NASA  researchers regarded the 
P.1127 model as the most docile V/STOL  configuration ever flown during their extensive experiences with 
free-flight VTOL  designs. As was the case for many free-flight model projects, the motion-picture segments 
showing successful transitions from hovering to conventional flight in the Full-Scale Tunnel and on the 
control-line facility were a powerful influence in convincing critics that the concept was feasible. In this case, 
the model flight demonstrations helped sway a doubtful British government to fund the project. Ultimately, 
refined versions of the P.1127 design were developed into today’s Harrier and AV-8 fighter-attack aircraft. 

The  NACA  and  NASA  also  conducted  extensive  free-flight  model  research  on  tilt  wing  aircraft  for  V/STOL  
missions.  In  the  early  1950s,  several  generic  free-flight  propeller-powered  models  were  flown  to  evaluate  some 
of  the  stability  and  control  issues  that  were  anticipated  to  limit  the  application  of  the  concept.37  The  fundamental 
principle  used  by  this  concept  to  convert  from  hovering  to  forward  flight  involves  reorienting  the  wing  from  a 
vertical  position  for  takeoff  to  a  conventional  position  for  forward  flight.  However,  this  simple  conversion  of  the 
wing  angle  relative  to  the  fuselage  brings 
major  challenges.  For  example,  the  wing 
experiences  large  changes  in  angle  of 
attack  relative  to  the  flight  path  during  the 
transition,  and  areas  of  wing  stall  may  be 
encountered  during  the  maneuver.  Wing 
stall  can  result  in  wing-dropping,  wallow-
ing  motion,  and  uncommanded  transient 
maneuvers.  Therefore,  the  wing  must  be 
carefully  designed  to  minimize  or  elimi-
nate  flow  separation  that  could  result  in 
degraded  or  unsatisfactory  stability  and 
control  characteristics.  Extensive  wind 
tunnel  and  flight  research  on  many 
generic  models,  as  well  as  the  Hiller 
X-18,  Vertol  VZ-2,  and  Ling-Temco-
Vought  XC-142A  tilt  wing  configurations 
at  Langley,  included  a  series  of  free-flight 
model  tests  in  the  Full-Scale  Tunnel.38 

Model  of  the  VZ-2  tilt  wing  VTOL  research  airplane  during  transition  flight  tests  in 
the  Full-Scale  Tunnel.  Although  the  tunnel’s  airspeed  acceleration  was  too  slow  to 
permit  rapid  transitions,  assessments  of  wing  stall  and  dynamic  stability  character-
istics  could  be  made  for  fixed  airspeeds  in  a  controlled  manner. 

Coordinated closely with full-scale flight tests, the model testing focused on providing early information on 
dynamic stability and the adequacy of control power in hovering and transition flight for the configurations. 
However, all projects quickly encountered the primary problem area of wing stall, especially in 
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reduced-power descending flight maneuvers. Tilt wing aircraft depend on the high-energy slipstream of 
propellers to prevent local wing stall by reducing the effective angle of attack across the wingspan. For 
reduced-power conditions, which are required for steep descents to accomplish short-field missions, the 
energy of the slipstream is severely reduced, and wing stall is experienced. Large uncontrolled dynamic 
motions may be exhibited by the configuration for such conditions, and the undesirable motions can limit 
the descent capability (or safety) of the airplane. Flying model tests provided valuable information on the 
acceptability of uncontrolled motions, such as wing dropping and lateral-directional wallowing during 
descent, and the test technique was used to evaluate the effectiveness of aircraft modifications such as 
wing flaps or slats, which were ultimately adapted by full-scale aircraft, such as the XC-142A. 

To simulate the critical state of descending flight in the fixed horizontal airflow of the Full-Scale Tunnel, 
Langley developed a modification to the free-flight test technique. An auxiliary compressed-air thrust tube 
was placed in the rear fuselage of the test model, and following a series of carefully calibrated conventional 
force tests of the model at various propeller-powered conditions, the auxiliary thrust was used in part to 
balance drag and permit simulation of reduced propeller power for descent. Although not fully correct from 
a technical perspective, this pseudo-descent simulation permitted the test team to obtain first-order critical 
information prior to flight tests of the full-scale aircraft. 

As the 1960s drew to a close, the worldwide engineering community began to appreciate that the weight 
and complexity required for VTOL  missions presented significant penalties in aircraft design. It therefore 
turned its attention to the possibility of providing less demanding short take-off and landing capability with 
fewer penalties, particularly for large military transport aircraft. Langley researchers had begun to explore 
methods of using propeller or jet exhaust flows to induce additional lift on wing surfaces in the 1950s, and 
although the magnitude of lift augmentation was relatively high, practical propulsion limitations stymied the 
application of many concepts. 

A  particularly promising concept known as the externally blown flap (EBF) used the redirected jet engine 
exhausts from conventional pod-mounted engines to induce additional circulation lift at low speeds for take-
off and landing.39  However, the relatively hot exhaust temperatures of turbojets of the 1950s were much too 
high for structural integrity and feasible applications. Nonetheless, Langley continued to explore and mature 
such ideas, known as “powered-lift” concepts. These research studies embodied conventional-powered 
model tests in several wind tunnels, including free-flight investigations of the dynamic stability and control 
of multiengine EBF configurations, with emphasis on providing satisfactory lateral control and lateral-direc-
tional trim after the failure of an engine. Other powered-lift concepts were also explored, including the 
upper-surface-blowing (USB) configuration, in which the engine exhaust is directed over the upper surface 
of the wing to induce additional circulation and lift.40  Advantages of this approach included potential noise 
shielding and flow-turning efficiency. 

While Langley continued its fundamental research on EBF and USB configurations, in the early 1970s, 
an enabling technology leap occurred with the introduction of turbofan engines, which inherently produce 
relatively cool exhaust fan flow. The turbofan was the perfect match for these STOL  concepts, and indus-
try’s awareness and participation in the basic NASA  research program matured the state of the art for 
design data for powered-lift aircraft. The free-flight model results, coupled with NASA  piloted simulator 
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John  P.  Campbell,  left,  inventor  of  the  externally  blown  flap  (EBF)  concept,  and  Gerald  G.  Kayten,  of  NASA  Headquarters,  pose  with 
a  generic  free-flight  model  of  an  STOL  configuration  at  the  Full-Scale  Tunnel.  Large  slotted  trailing-edge  flaps  were  used  to  deflect  the 
exhaust  flows  of  turbofan  engines  to  induce  extremely  high  lift  at  low  speeds.  Note  the  nose-down  tilt  of  the  engine  nacelles  and  the  high 
T-tail  used  to  avoid  the  large  downwash  variations  behind  the  wing  in  STOL  conditions. 

studies of full-scale aircraft STOL  missions, helped provide the fundamental knowledge and data required 
to reduce risk in development programs. Ultimately applied to the McDonnell-Douglas YC-15 and Boeing 
YC-14 prototype transports in the 1970s and today’s Boeing C-17, the EBF and USB concepts were the 
result of over 30 years of NASA  research and development, including many valuable studies of free-flight 
models in the Full-Scale Tunnel. 

Parawing Configurations 

Langley’s Francis Rogallo is widely recognized as the father of the flexible wing concept known as the 
parawing. Rogallo conceived  the idea of a flexible, diamond-shaped wing attached to rigid wing-forming 
members in 1947. His efforts to demonstrate the gliding potential of unpowered parawing configurations 
were followed by a growing interest in industry for broad applications to utility vehicles and cargo delivery 
concepts. When the space age dawned, NASA  began to explore various candidate approaches for the 
recovery of its space capsules after exploratory space missions. A  special interest was the possibility of 
extending  the  landing  footprint  to  the  point  that  recovery  could  occur  on  land  or  runways,  thereby  avoiding  the 
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Free-flight model of parawing utility vehicle during tests in the Langley Full-Scale Tunnel. Control was accomplished by tilting the para-
wing relative to the pilot’s platform. After large adverse control effects were discovered using the technique, researchers conceived new 
roll control concepts using hinged keel members. 

complexity  and  cost  of  ballistic  water  landings,  which  involved  recovery  ships  and  other  complications.  The 
search  for  recovery  concepts  that  provided  a  degree  of  modification  to  the  ballistic  recovery  flight  trajectory 
included  serious  considerations  of  parawing/capsule  applications.  At  the  same  time,  free-flight  studies  were 
conducted  to  explore  the  use  of  packaged,  deployable  parawings  for  the  recovery  of  rocket  boosters,  such  as 
the  Saturn  rocket. 

Before any of the foregoing parawing applications could be realized, significant research was required on 
the dynamic stability and control characteristics of the unconventional configurations resulting from 
parawing-vehicle combinations. In addition to traditional stability and control issues, such as how to provide 
sufficient levels of control without excessive adverse effects, researchers set out to explore problems  
associated with the deployment of flexible wings from other vehicles during flight.41  Free-flight model testing 
of the dynamic stability of parawing vehicles began with a series of studies of powered parawing  
utility vehicles in 1961.42  One of the major issues to be addressed in the design of parawing/vehicle combi-
nations was the adequacy of longitudinal and lateral-directional control, because the relatively high position 
of the parawing relative to the center of gravity of the vehicle could create unconventional responses to 
inputs by the pilot. 

During flight tests of dynamic models, it was found that shifting the center of gravity of the vehicle fore and 
aft for pitch control and side to side for roll control was satisfactory for some configurations. This control 
concept was implemented by banking the wing relative to the vehicle for roll control and by pitching the wing 
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for longitudinal control. However, other configurations using the same control technique exhibited marginal 
or unsatisfactory levels of control. In fact, some of the configurations would roll in a direction opposite to the 
pilot’s input because of excessive adverse yaw. Langley researchers conceived and demonstrated a revised 
lateral control concept, in which wing bank was still used for roll control, but the aft sections of the rigid lead-
ing edge of the parawing were hinged to reduce large hinge moments produced by the original wing-bank 
control system. When modified with the revised control concept, the free-flight models all exhibited satisfac-
tory characteristics.43 

In the early 1960s, parawing  recovery of large rocket boosters in the class of the Saturn rocket was 
explored by wind tunnel testing and outdoor drop-model studies at Langley’s Plum Tree test range.44  The 
concept used a folded rigid-member parawing that was stowed and deployed from the side of the booster 
after launch and booster burnout during an essentially vertical flight path at subsonic speeds. After deploy-
ment, a small drogue parachute was used to maintain separation between the booster and the parawing 
until the parawing was fully deployed and producing lift for the recovery pullout maneuver. Suspension lines 
at the front and rear of the parawing were used for control inputs during the recovery flight. Although simple 
in concept, this recovery procedure had many potential pitfalls that were identified and eventually solved 
during  the  test  program.  Critical  design 
parameters  such  as  the  length  of  the  sus-
pension  lines,  the  spacing  between  the 
side  of  the  booster  and  the  inflating  para- 
wing,  and  the  opening  shock  loads  were  all 
assessed  using  the  drop-model  testing 
technique,  in  which  the  booster  and  stowed 
parawing  were  released  from  a  helicopter 
at  altitudes  of  about  3,000  feet.  Once  a  sat-
isfactory  deployment  was  obtained  and  the 
parawing/booster  combination  entered  a 
glide,  stability  and  control  problems  were 
noted,  including  an  abrupt  stall  that  some-
times  led  to  the  test  article  pitching  down 
and  tumbling  with  the  booster  falling  on  top 
of  the  paraw ing.  The  free-flight  model  also 
exhibited  relatively  small  constant-ampli-
tude  rolling  and  yawing  motions. 

Sequence  showing  deployment  process  for  a  free-flight  model  parawing  
recovery  system  for  the  Saturn  rocket  booster.  Dynamic  stability  and  control 
challenges  were  met  after  considerable  research  with  a  large  free-flight  model  
deployed  from  a  helicopter. 

Many organizations at Langley were also involved in wind  tunnel testing of parawing/capsule combina-
tions to assess aerodynamic characteristics for possible applications as gliding recovery systems. These 
activities included free-flight model testing in the Full-Scale Tunnel and outdoor drop-model testing.45  Once 
again, the parawing deployment process and an evaluation of the dynamic stability and control of the 
parawing/capsule arrangement was the major thrust of the research efforts. The drop-model used a tele-
scoping rigid parawing in which the leading edges could be retracted into a small spanwise dimension and 
attached near the apex of a blunted cone suspended below the parawing. The lengths of the suspension 
lines were varied to shift the center of gravity of the vehicle fore and aft for pitch control and side to side for 
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roll or lateral control. A  drogue parachute was necessary to extract, open, and separate the parawing from 
the capsule. Dropped from a helicopter at near-zero airspeed and an altitude of approximately 3,000 feet, 
the 85-pound combination began the parawing deployment process at about 2,000 feet. After a series of 
exploratory test flights established the critical design parameters, results indicated that the free-flight model 
was stable and could be controlled during gliding flight by shifting the center of gravity. The deployment of 
the parawing, however, required a carefully controlled sequence that could not occur too quickly. In particu-
lar, the parawing had to be slowly rotated to a lifting condition, or a tumbling motion ensued. 

In addition to the foregoing studies, many more free-flight model investigations of parawing configurations 
were conducted at Langley with a variety of applications, including landing aids for high-speed aircraft  
and reentry vehicles.46 

Variable Geometry 

Spurred on by postwar interests in the variable wing-sweep concept as a means to optimize mission 
performance at both low and high speeds, the NACA  at Langley initiated a broad research program to iden-
tify the potential benefits and problems associated with the concept.47  Early exploratory wind tunnel studies 
of a modified X-1 model have already been mentioned. The disappointing experiences of the Bell X-5 
research aircraft, which used a single wing pivot to achieve variable sweep in the early 1950s, had clearly 
identified the unacceptable weight penalties associated with the concept of translating the wing along the 
fuselage centerline to maintain satisfactory levels of longitudinal stability while the wing-sweep angle was 
varied from forward to aft sweep. After the X-5 experience, military interest in variable sweep quickly dimin-
ished, while the NACA  continued to explore alternate concepts that might permit variations in wing sweep 
without moving the pivot location and without serious degradation in longitudinal stability and control. 

After  years  of  intense  research  and  wind 
tunnel  testing,  Langley  researchers  con-
ceived  a  promising  concept  known  as  the 
outboard  pivot.48  The  basic  principle  of  the 
NASA  solution  was  to  pivot  the  movable 
wing  panels  at  two  outboard  pivot  loca-
tions  on  a  fixed  inner  wing  and  share  the 
lift  between  the  fixed  portion  of  the  wing 
and  the  movable  outer  wing  panel,  thereby 
minimizing  the  longitudinal  movement  of 
the  aerod ynamic  center  of  lift  for  various 
flight  speeds.  As  the  concept  was  matured 
in  configuration  studies  and  supporting 
tests,  refined  designs  were  continually 
submitted  to  intense  evaluations  in  tun-
nels  across  the  speed  range  from  super-
sonic  cruise  conditions  to  subsonic  take-
off  and  landing. 

Free-flight  model  of  outboard  pivot  variable-sweep  model  used  in  research  studies 
at  Langley.  Conceived  by  researchers  at  the  Langley  7- by  10-Foot  High-Speed 
Tunnel,  this  configuration  was  tested  across  the  speed  range,  including  low-speed 
flight  tests  in  the  Full-Scale  Tunnel. 
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The use of dynamically scaled free-flight models to evaluate the stability and control characteristics of 
variable-sweep configurations  was an ideal application of the testing technique. Because variable-sweep 
designs are capable of an infinite number of wing-sweep angles between the forward and aft positions, the 
number of conventional wind  tunnel force tests required to document stability and control variations with 
wing sweep for every sweep angle could become unacceptable. In contrast, a free-flight model with con-
tinually variable wing sweep  angles could be used to quickly examine qualitative characteristics as its 
geometry changed, leading to rapid identification of problems. Free-flight model demonstrations of a con-
figuration based on a proposed Navy combat air patrol (CAP) mission in the Full-Scale Tunnel provided a 
convincing demonstration that the outboard pivot was ready for applications. This fundamental research 
program provided key guidance for the design of fighters and bombers for the U.S. military, including the 
General Dynamics F-111 and the Rockwell B-1 for the Air Force, and the Grumman F-14 for the Navy. Dur-
ing the early configuration development of these variable-sweep aircraft, Langley conducted free-flight, spin 
tunnel, and outdoor drop-model tests of dynamically scaled models of each configuration at the request of 
DOD to evaluate dynamic stability and control, spin and recovery, and spin resistance characteristics. 

Flight test of a skewed wing free-flight model with the wing swept 40 degrees 
in the Free-Flight Tunnel in 1946. R.T. Jones and John P. Campbell initiated 
these exploratory tests to assess the flight behavior of the asymmetric con-
figuration and were the first flight tests of the skewed wing concept in the U.S. 
aeronautical community. 

The  NACA  and  NASA  have  explored 
other  approaches  to  providing  the  aerody-
namic  benefits  of  variable  wing  sweep.  The 
oblique  wing  concept  (sometimes  referred 
to  as  the  “switchblade  wing”  or  “skewed 
wing”)  had  originated  in  the  German  design 
studies of the Blom & Voss P202 jet air-
craft during World War II and was pursued 
at Langley by Robert T. Jones. Oblique 
wing designs use a single-pivot, all-mov-
ing wing to achieve variable sweep in an 
asymmetrical fashion. The wing is posi-
tioned in the conventional unswept posi-
tion for take-off and landings, and it is 
rotated about its single pivot point for 
high-speed flight. As part of a general 
research effort that included  theoretical 
aerodynamic studies and conventional 
wind tunnel tests,  a  free-flight  investigation 
of  the  dynamic  stability  and  control  of  a 
simplified  model  was  conducted  in  the 
Free-Flight  Tunnel  in  1946.49  This  research 
on  the  asymmetric  swept  wing  actually  predated  NACA  wind  tunnel  research  on  symmetrical  variable  sweep 
concepts  with  the  X-1  model.50  The  test  objectives  were  to  determine  whether  such  a  radical  aircraft  configu-
ration  would  exhibit  satisfactory  stability  characteristics  and  remain  controllable  in  the  swept  wing  asymmet-
ric  state  at  low-speed  flight  conditions.  The  results  of  the  tests,  which  were  the  first  U.S.  flight  studies  of 
oblique  wings,  showed  that  the  wing  could  be  swept  as  much  as  40  degrees  without  significant  degradation 
in  behavior.  However,  when  the  sweep  angle  was  increased  to  60  degrees,  an  unacceptable  longitudinal  trim 
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change  was  experienced,  and  a  severe  reduction  in  lateral  control  occurred  at  moderate  and  high  angles  of 
attack.  Nonetheless,  the  results  obtained  with  the  simple  free-flight  model  provided  optimism  that  the  uncon-
ventional  oblique  wing  concept  might  be  adaptable. 

R.T. Jones transferred to the NACA Ames  Aeronautical Laboratory in 1947 and continued his brilliant 
career, which included a continuing interest in the application of oblique wing technology. In the early 1970s, 
the scope of NASA  studies on potential civil supersonic transport configurations included an effort by an 
Ames team headed by Jones that examined a possible oblique wing version of the Supersonic Transport 
(SST). Although wind tunnel testing was conducted at Ames, the demise and cancellation of the American 
SST  program in the early 1970s terminated this activity. Wind tunnel and computational studies of oblique 
wing designs continued at Ames throughout the 1970s for subsonic, transonic, and supersonic flight appli-
cations.51  Jones participated in flight tests of several oblique wing, radio-controlled models, and a joint 
Ames-Dryden project was initiated to use the remotely 
piloted Oblique  Wing Research Aircraft (OWRA) for 
studies of the aerodynamic characteristics and control 
requirements to achieve satisfactory handling quali-
ties. The wing  of the OWRA  could be skewed 45 
degrees (left wing forward), and the vehicle was tested 
in the Ames 40- by 80-Foot Tunnel during the develop-
mental program. A  successful flight program at Dryden 
provided critical information for a follow-on piloted 
demonstrator. 

The  AD-1  oblique  wing  demonstrator  in  flight  at  the  Dryden  Flight 
Research  Center  in  1981.  The  aircraft  completed  79  research 
missions. 

Growing interest in the oblique wing and the suc-
cess of the OWRA  remotely piloted vehicle project led 
to the design and low-speed flight demonstrations of a 
full-scale research aircraft known as the AD-1 in the 
late 1970s. Designed as a low-cost demonstrator, the 
radical AD-1 proved to be a showstopper during air 
shows and generated considerable public interest. 
The flight characteristics of the AD-1 were satisfactory 
for wing-sweep angles of less than about 45 degrees, 
but the handling qualities degraded for higher values 
of sweep, in agreement with the earlier Langley 
exploratory free-flight model study. 

Stanford  University  supported  the  NASA Ames  Research  Center 
with radio-controlled, free-flight model testing of several oblique 
wing  models.  Here,  a  20-foot-span  oblique  flying  wing  model 
powered  by  two  ducted  fans  is  undergoing  flight  evaluations. 

After his retirement from NASA  in 1981, Jones con-
tinued his interest in supersonic oblique wing trans-
port configurations. When the NASA  High Speed 
Research program to develop  technologies necessary 
for a viable Supersonic Transport began in the 1990s, 
several industry teams revisited the oblique wing. 
Ames sponsored free-flight, radio-controlled model 
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studies of oblique wing configurations at Stanford University in the early 1990s.52  The first Stanford model 
of a radical oblique flying wing (OFW) design was a propeller-powered, 10-foot span with wing sweep capa-
bility for angles between 25 and 65 degrees. A  second free-flight model had a 20-foot span and was 
designed to be a 0.05-scale model of a 400-passenger aircraft. Powered by two ducted fans, the model 
instrumentation included a three-axis rate gyro, angle-of-attack and sideslip vanes, and a turbine airspeed 
indicator. After a preflight developmental process mounted  to a three-degree-of-freedom rig atop an auto-
mobile, the model was flown in 1994 with a sweep-angle variation from 35 to 50 degrees. 

As a result of free-flight model contributions from Langley, Ames, Dryden, and academia, major issues 
regarding potential dynamic stability and control problems for oblique wing configurations have been 
addressed for low-speed conditions. Unfortunately, funding for transonic and supersonic model flight stud-
ies has not been forthcoming, and high-speed studies have not yet been accomplished. A  2006 oblique 
flying wing contract to Northrop Grumman by the Defense Advanced Research Projects Agency (DARPA) 
was initiated to mature the technology to achieve high cruise efficiency, long endurance, and extended low-
speed loiter capability. The program objectives included the development and flight of a small-scale super-
sonic technology demonstrator X-plane known as Switchblade, and wind tunnel testing was underway in 
2007. In October 2008, DARPA canceled the project after the preliminary design effort. 

Launch  and  deployment  of  a  foldout  wing  demonstrator  model  at  the  NASA  Dryden  Flight  Research  Center  using  an  unpowered  test 
model  and  the  mother  ship  technique. 

Other examples of free-flight models used to explore the effects of variable geometry on flight character-
istics include the use of foldout wings and lifting surfaces and extensible stabilizing surfaces. For example, 
in 2001, Dryden researchers used Dale Reed’s mother ship technique to launch an unpowered research 
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model that demonstrated a deployable, inflatable wing.53  Known as the I2000 configuration, the instru-
mented research model was air-launched from a larger radio-controlled model at an altitude of about 1,000 
feet, and its deployable wings were inflated by an onboard nitrogen system. Successful flights were con-
ducted with the model demonstrating satisfactory stability during the wing deployment from the stowed 
position on three-drop operations, and parameter estimation procedures were used to extract aerodynamic 
properties of the model. 

Arguably, the most challenging NASA  application of free-flying models to variable geometry requirements 
has been a result of interplanetary exploration interests.54  The age-old dream of using remotely piloted 
aircraft to explore Mars continually resurfaces as an attractive alternative to land rovers or orbiting satellites. 
An aircraft flying about 1 mile above the Martian surface could obtain high-resolution mapping over a 400-
mile distance with navigation  to specific areas. In addition to the challenges in developing this capability 
within the areas of propulsion, structures, and aerodynamics, an approach must be devised to design and 
construct a stowable aircraft aboard an interplanetary rocket and deploy it into conventional flight. Over the 
past 40 years, NASA, its industry partners, and universities have addressed a majority of these concerns 
through mission studies, wind tunnel tests, propulsion and propulsion integration studies, and vehicle 
design studies. The concept calls for delivery of the folded aircraft to Mars within a protective aeroshell 
aboard a spacecraft. After the aeroshell separates from the carrier, it enters the Martian atmosphere, where 
it begins to decelerate, and a parachute deployment provides additional deceleration. After a heat shield on 
the aeroshell is released, the stowed aircraft is released and unfolded, the pullout maneuver to conven-
tional flight is completed, and the vehicle begins its exploration mission. 

NASA–industry test team poses with the Mars airplane High-Altitude Deployment 
Demonstrator model before its flight. 

In the late 1990s, NASA  invited 
proposals for Mars exploration from 
the scientific community, including 
Langley, which had organized disci-
plinary experts into a design team 
for a Mars airplane. By 2002, spe-
cialized wind tunnel tests to develop 
a deployable configuration were 
underway, including dynamic  tests 
to investigate design approaches 
for the deployment. In mid-2002, 
development of a proposal known 
as Aerial Regional-Scale Environ-
mental Survey (ARES) of Mars was 
submitted to NASA  Headquarters 
for competitive evaluations for Mars 
exploratory missions.55  Langley had 
teamed with Aurora Applied Sciences, Corp., of Manassas, VA, for flight tests of candidate aircraft configu-
rations. One aircraft, known as the High-Altitude Deployment Demonstrator 1 (HADD1), was used in critical 
high-altitude deployment tests. Carried aloft by a high-altitude helium balloon to about 100,000 feet over 
Oregon, the 10-foot-span HADD1 was released from the balloon and unfolded, and it completed 
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a 90-minute, preprogrammed autonomous flight. After the aircraft completed a successful flight, control 
transferred to a human pilot for a safe landing. A  second aircraft, known as HADD2, was a full-scale version 
of the Mars aircraft with a 20-foot span, and it was delivered to Langley in 2006 to be prepared for instru-
mentation. After a review of all proposals for the Mars exploration mission, NASA Headquarters  selected 
proposals for satellite orbiters, and the Mars airplane activity at Langley was terminated. 

Space Capsules 

The selection of blunt capsule  designs for the Mercury, Gemini, and Apollo programs resulted in numer-
ous investigations of the dynamic stability and recovery of such shapes. Nonlinear, unstable variations of 
aerodynamic forces and moments with angle of attack and sideslip were known to exist for these configura-
tions, and extensive conventional force tests, dynamic free-flight model tests, and analytical studies were 
conducted to define the nature of problems that might be encountered during atmospheric reentry. At Ames, 
the supersonic  and hypersonic free-flight aerodynamic facilities have been used to observe dynamic stabil-
ity characteristics, extract aerodynamic data from flight tests, provide stabilizing concepts, and develop 
mathematical models for flight simulation at hypersonic and supersonic speeds. 

Relevant  research  in  dynamic  free-flight  model  research  in  the  Ames  Supersonic  Free 
Flight  Facility  supporting  Project  Mercury.  Similar  research  efforts  have  supported  many 
other  capsule  configurations,  including  tests  of  the  current  Orion  capsule  shape  in  the 
Ames  Hypervelocity  Free-Flight  Facility. 

Meanwhile, at Langley, researchers in  the  Spin  Tunnel  were  conducting  dynamic  stability investigations of 
the Mercury, Gemini, and Apollo capsules in vertically descending subsonic flight.56  Results of these studies 
dramatically illustrated potential dynamic stability issues during spacecraft recovery. For example, the 
Gemini capsule  model was unstable; it would at various times oscillate, tumble, or spin about a vertical axis, 
with its symmetrical axis tilted as much as 90 degrees from the vertical. However, the deployment of a 
drogue parachute during any spin-
ning or tumbling motions quickly 
terminated these unstable motions 
at subsonic speeds. Extensive 
tests of various drogue-parachute 
configurations resulted in defini-
tions of acceptable parachute bri-
dle-line lengths and attachment 
points. Spin tunnel results for the 
Apollo Command Module configu-
ration were even more dramatic. 
The Apollo capsule with blunt end 
forward was dynamically unstable 
and displayed  violent gyrations, 
including large oscillations, tum-
bling, and spinning motions. With 
the apex end forward, the capsule 
was dynamically stable and would 
trim at an angle of attack of about 
40 degrees and glide in large cir-
cles. Once again, the use of a 
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drogue parachute stabilized the capsule, and the  researchers  also  found  that  retention  of  the  launch  escape 
system,  with  either  a  drogue  parachute  or  canard  surfaces  attached  to  it,  would  prevent  an  unacceptable 
apex-forward  trim  condition  during  launch  abort. 

After the Apollo  program, NASA  conducted a considerable effort on unpiloted space probes and planetary 
exploration. The packaging of instruments designed to collect information on planetary atmospheres 
involved the use of capsules designed to survive entry into a planetary atmosphere and to descend in a 
stable condition to the planet’s surface. In the Langley Spin Tunnel, several planetary-entry capsule con-
figurations were tested to evaluate their dynamic stability during descent, with a priority in simulating descent 
in the Martian atmosphere.57  Simulation of this scenario required consideration of new scaling procedures 
for dynamic models, becaused the 
piloted capsule research just dis-
cussed was conducted in the Earth’s 
gravitational field, which was common 
to both the models and the full-scale 
articles. In addition, the thinner atmo-
sphere of Mars represented a chal-
lenge in simulating a scaled  rate of 
descent. After studies of the simula-
tion requirements, it was concluded 
that the scaling laws used for dynamic 
models would not have to be changed, 
and that the correction in results for 
the different gravitational fields could 
be applied when the data were con-
verted from model-scale to full-scale 
values. Studies also included assess-
ments of the  Pioneer  Venus  probe  in 
the  1970s.  These  tests  provided  con-
siderable  design  information  on  the 
dynamic  stability  of  a  variety  of  poten-
tial  planetary  exploration  capsule 
shapes.  Additional  studies  of  the  stabil-
ity  characteristics  of  blunt,  large-angle 
capsules  were  conducted  in  the  late 
1990s  in  the  Spin  Tunnel.58  The  investi-
gation  included  four  entry-vehicle 
shapes  with  variable  center-of-gravity 
locations  within  the  test  variables. 

Photograph of the free-flight Mercury capsule in vertical descent in the Spin Tunnel 
with drogue parachute deployed. Tests to determine the dynamic stability charac-
teristics of capsules have continued to this day. 

As the new millennium began, 
NASA’s interests in piloted and unpi-
loted planetary exploration resulted in 
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additional studies of dynamic  stability in the Spin Tunnel. Studies have included the Stardust comet probe 
and the proposed Mars and Moonrise lunar sample return missions. In the Stardust study, the results of the 
investigation first demonstrated the effectiveness of a drogue parachute for enhanced stability, and the 
required parachute area, riser-line length, and bridle geometry were defined for subsonic stability, but the 
geometry was also applied for supersonic conditions to damp oscillations. Sample return vehicles have 
been investigated for their dynamic behavior, which has included unexpected dynamic instabilities exhib-
ited by statically stable configurations.59  Modern parameter identification (PID) techniques for extraction of 
aerodynamic data from flight tests have been factored into the investigations to derive inputs for numerical 
simulation of descent. The tunnel and its dynamic model testing techniques are supporting NASA’s Constel-
lation program for lunar exploration. Included in the dynamic stability testing are the Orion launch abort 
vehicle, the crew module, and alternate launch abort systems.60  Once again, the facility is providing guid-
ance for the design of drogue parachutes to stabilize the reentry of the Orion capsule.61 

Reentry Vehicles and Lifting Bodies 

The rapid accelerations in aircraft speed and altitude capabilities that occurred at the end of World War II 
precipitated the beginning of serious interest in the possibility of piloted vehicles for access to and recovery 
from space for military and civil missions. Having conquered the transonic and supersonic flight regimes, 
researchers turned their attention to hypersonic flight and its challenges, which included propulsion sys-
tems, structural heat loads, mission operational issues, and handling qualities of the unconventional vehi-
cles under consideration. The NACA  and military visionaries initiated early efforts for the X-15 hypersonic 
research aircraft, in-house design studies for hypersonic vehicles were started at Langley and Ames, and 
the Air Force began its X-20 Dyna-Soar space plane program. The evolution of long, slender configurations 
and others with highly swept lifting surfaces were yet another perturbation of new and unusual vehicles with 
unconventional aerodynamic, stability, and control characteristics requiring free-flight models for assess-
ments of flight dynamics. 

In addition to the high-speed studies of the X-15 in the Ames supersonic free-flight facility previously dis-
cussed, the X-15 program sponsored low-speed investigations of free-flight models at Langley in the Full-
Scale Tunnel, the Spin Tunnel, and an outdoor drop model launched from a helicopter.62  The Full-Scale 
Tunnel study concentrated on assessments of the high-angle-of-attack behavior of the early X-15 configu-
ration (known as configuration 1), which included a tall vertical tail and fuselage side fairings that extended 
to the nose of the airplane. Key X-15 features under study were the use of an all-moving vertical tail for yaw 
control and differential deflection of the all-moving horizontal tail surfaces for roll control. The flight tests 
were conducted for angles of attack as high as 30 degrees, where the longitudinal and directional stability 
were noticeably degraded; however, the effectiveness and control harmony provided by the vertical tail and 
differential tail were satisfactory. Additional free-flight studies were made in the Full-Scale Tunnel for the 
final X-15 design (configuration 3), which did not have extended fuselage side fairings and used a sym-
metrical vertical tail configuration with a jettisonable lower  rudder for landing. The results were similar to 
those previously obtained and provided confidence in the design. 

The most significant contribution of the NASA  free-flight tests of the X-15 was confirmation of the effec-
tiveness of the differential tail for control. North American had followed pioneering research at Langley on 
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the use of the tail for roll control and had used such a design in its YF-107A  aircraft. It opted to use the 
concept for the X-15 to avoid ailerons that would have complicated wing design for the hypersonic aircraft. 
Nonetheless, skepticism existed over the potential effectiveness of the application until the free-flight tests 
at Langley dramatically demonstrated its success.63 

Along with the X-15 program, NASA  activities in the late 1950s included a broad research program on 
hypersonic glider designs. At Langley, many concepts were conceived by performance-oriented organiza-
tions and explored with free-flight models in the Full-Scale Tunnel, including half cones, pyramid-shaped 
vehicles, lenticular shapes, variable-geometry designs with foldout wings, and flat-bottom configurations 
with high wing sweep (on the order of 80 degrees).64  Throughout these studies, results were compared to 
experiences with the X-15 to establish the feasibility of the unorthodox shapes for operational missions. On 
the basis of lift-to-drag ratio and wing loadings, the aerodynamic gliding performance of the concepts was 
acceptable, and the longitudinal characteristics of the designs appeared satisfactory, but the lateral- 
directional behavior of the highly swept winged designs was unsatisfactory without artificial roll stabilization. 
Specifically, the models exhibited large unacceptable roll oscillations at moderate and high angles of attack. 
As the existence of the oscillations was known, it was possible to design lateral control systems that damped 
the motions and produced satisfactory characteristics. In addition to the in-house exploratory studies, Lang-
ley organizations contributed  to the development of the short-lived Air Force Dyna-Soar project, including 
free-flight model tests in the Langley Full-Scale Tunnel.65 

The  most  important  contribu-
tions  of  free-flight  models  to  reentry 
gliders  occurred  while  the  full-scale 
X-15  was  being  flight-tested.  These 
historic  efforts  were  produced  dur-
ing  the  conception  and  develop-
ment  of  wingless  lifting  bodies.  In 
the  late  1950s,  scientists  at  NASA  
Ames  conducted  in-depth  studies 
of  the  aerodynamic  and  aerother-
mal  challenges  of  hypersonic  reen-
try  and  concluded  that  blunted  half-
cone  shapes  could  provide 
adequate  thermal  protection  for 
vehicle  structures  while  also  pro-
ducing  a  significant  expansion  in 
operational  range  and  landing 
options.  As  interest  in  the  concept 
intensified  after  a  major  conference 
in  1958,  a  series  of  half-cone  free-
flight  models  provided  proof  that 
such  vehicles  exhibited  satisfac-
tory  flight  behavior. 

Photograph  of  the  Air  Force  Dyna-Soar  configuration  in  free  flight  in  the  Full-Scale  Tunnel. 
The  project  contributed  critical  information  on  lateral-directional  stability  as  part  of  a  broad 
research  program  within  NASA  on  the  low-speed  dynamic  stability  and  control  character-
istics  of  hypersonic  vehicles. 
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At Langley, researchers had followed the development of an Ames reentry concept known as the M1 
configuration, which resembled the nose of a blunted rocket. Intrigued by the issues concerning stability 
and control of this radical shape, the staff of the Full-Scale Tunnel conducted free-flight tests of a one-third-
scale M1 model in 1959 to develop control surface concepts and to assess the dynamic stability and control 
of the configuration. After major control deficiencies were encountered in the test program, a modified con-
figuration produced positive results that further fueled the interest in lifting bodies.66 

The most famous free-flight model 
activity in support of lifting body develop-
ment was stimulated by the advocacy and 
leadership of Dale Reed of the Dryden 
Flight Research Center. In 1962, Reed 
became fascinated with the lifting body 
concept and proposed that a piloted 
research vehicle be used to validate the 
potential of lifting bodies.67  He was par-
ticularly interested in the flight character-
istics of a second-generation  Ames lifting 
body design known as the M2-F1 con-
cept. After Reed’s convincing flights of 
radio-controlled models of the M2-F1, 
ranging from kite-like tows to launches 
from a larger radio-controlled mother 
ship, demonstrated the satisfactory flight 
characteristics of the M2-F1, Reed 
obtained approval for the construction 
and flight-testing of his vision of a low-
cost piloted unpowered glider. The 
motion-picture films of Reed’s free-flight 
model flight tests had an overwhelming 
effect on skeptics, and management’s 
support led to a decade of successful lift-
ing body flight research at Dryden. 

Photograph  of  the  Ames  M1  reentry  concept  in  free-flight  during  evaluations  in 
1959.  The  model  was  powered  by  compressed  air  through  a  nozzle  at  the  rear 
of  the  model  and  used  two  pairs  of  control  surfaces. 

Photograph  of  Dryden  free-flight  research  models  of  reentry  lifting  bodies.  Dale 
Reed,  second  from  left,  and  his  test  team  pose  with  the  mother  ship  and  models 
of  the  M2-F2  and  the  Hyper  III  configurations. 

At Langley, support for the M2-F1 flight 
program included free-flight tow tests of a 
model in the Full-Scale Tunnel, and the 
emergence of Langley’s own lifting body 
design, known  as the HL-10, resulted in 
wind tunnel tests in nearly every facility at 
Langley.68  Free-flight testing of a dynamic 
model of the HL-10 in the Full-Scale Tun-
nel demonstrated outstanding dynamic 
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stability and control to angles of attack as high as 45 degrees, and rolling oscillations that had been exhib-
ited by the earlier highly swept reentry bodies were completely damped for the HL-10 with three vertical 
fins.69  Within its lifting body activities, Langley also responded to an Air Force request to evaluate the stabil-
ity of the Precision Recovery Including Maneuvering Entry (PRIME) SV-5 unpiloted reentry vehicle on tow 
during retrieval using a C-130 aircraft.70 

In the early 1970s, a new class of lifting body dubbed “racehorses” by Dale Reed emerged.71 Character-
ized by high fineness ratios, long pointed noses, and flat bottoms, these configurations were much more 
efficient at hypersonic speeds than had been the earlier “flying bathtubs.” Reed and his team evaluated one 
Langley-developed configuration, known as the Hyper III, using free-flight models and the mother ship test 
technique. Although the Hyper III was efficient at high speeds, it exhibited a low lift-to-drag ratio at low 
speeds, requiring some form of variable geometry such as a pivot wing, flexible wing, or gliding parachute. 

Reed successfully advocated for a low-cost, 32-foot-long helicopter-launched demonstration vehicle of 
the Hyper III with a pop-out wing, which made its first flight in 1969. Flown from a ground-based cockpit, the 
Hyper III flight was launched from a helicopter at an altitude of 10,000 feet. After being flown in research 
maneuvers by a research pilot using instruments, the vehicle was handed off to a safety pilot, who landed 
it. Unfortunately, funding for a low-cost piloted project similar to the earlier M2-F1 activity was not forthcom-
ing for the Hyper III. 

Ultimately, the NASA  Space Shuttle configuration was selected as a winged vehicle in lieu of derivative 
lifting body options. Nonetheless, the successful lifting body concept has been revisited many times by 
NASA  and international space programs. The NASA  lifting body follow-on programs have included the 
HL-20 lifting body space ferry, the X-30 National Aero-Space Plane, the X-33 Shuttle replacement, and the 
X-38 Crew Return Vehicle, which used a parafoil gliding parachute for landings. 

The  full-scale  version  of  the  Hyper  III  was  32  feet  long,  launched 
from  a  helicopter  at  10,000  feet,  and  controlled  by  a  NASA   
research  pilot  from  a  ground-based  cockpit. 

During 1992, a Dryden team including Reed dem-
onstrated the viability of an autonomous landing 
concept proposed for the X-38, using Global Posi-
tioning System (GPS) for navigation and maneuver-
ing to a landing  site. In the Spacecraft Autoland proj-
ect, a 4-foot-long flattened biconical generic airframe 
called Spacewedge was used with a ram-air parafoil 
and controlled  by a small onboard computer for 
autonomous flight.72  Using the vehicle shape of the 
Air Force–NASA  X-24 lifting body, the X-38 team 
subsequently conducted radio-controlled drop tests 
of a 4-foot-long model equipped with a ram-air para-
foil launched from a general aviation airplane in 
1995. In 2000, a 0.80-scale X-38 vehicle was 
released from a B-52 at an altitude of 39,000 feet 
and completed a successful landing, but the X-38 
program was canceled in 2002. 
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Supersonic Transports 

The commitment of the United States in 1963 to develop 
a civil Supersonic Transport had a major impact on NASA’s 
aeronautical centers. Nearly every discipline in aerospace  
technology was challenged to supply design data and 
assessments of feasible aircraft configurations. Within 
aerodynamics, substantial advances in the state of the art 
for supersonic and transonic performance were made; 
however, the highly swept wing planforms used by most of 
the candidate designs were expected to exhibit poor low-
speed characteristics at take-off and landing conditions.  
Dynamic free-flight models were considered a necessity to 
evaluate potential low-speed problems, and the Langley  
Full-Scale Tunnel was a major participant in the program. 
Initially, the free-flight model test programs were directed  
at evaluating the flying characteristics of the competing  
designs. The original Boeing  SST  variable-sweep design  
and Lockheed SST  double-delta design were flown exten-
sively in the Full-Scale Tunnel and used in several entries 
to measure static and dynamic stability and control aero-
dynamic data.73  The resulting aerodynamic data were used 
for analysis of the model flight-test results and for inputs to 
piloted simulators. The Boeing design showed satisfactory 
characteristics, except for a marked deterioration in lateral  
control effectiveness and roll damping when the wing was 
at maximum sweep (72 degrees). The Lockheed design  
was also satisfactory, except for extreme angles of attack 
(28 degrees), where it exhibited a divergence in yaw. 

A  0.80-scale  model  of  the  X-38  Crew  Return  Vehicle  in 
controlled  glide  using  a  parafoil  for  landing. 

Free-flight  model  of  the  Boeing  variable-sweep  model  733 
Supersonic  Transport  undergoes  assessments  of  dynamic 
stability  and  control  in  the  Full-Scale  Tunnel.  After  these 
tests,  Boeing  changed  its  configuration  for  the  SST  to  a 
fixed  wing  design. 

NASA  had conducted in-house design studies of Super-
sonic Transport configurations, which industry evaluated  
and then selected the most feasible vehicles for technol-
ogy assessments. One of these configurations, known as 
the SCAT-15, used auxiliary variable-sweep wing panels  
for improved low-speed aero dynamic behavior. However, 
industry did not view favorably  the weight penalties associ-
ated with the variable-sweep feature, and the NASA  team 
removed the variable-sweep feature and redesigned the 
configuration, retaining its outstanding supersonic perfor-
mance in a derivative configuration known as the SCAT-
15F design.74  Unfortunately, the SCAT-15F exhibited longi-
tudinal instability (pitch-up) at moderate angles of attack 
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Free-flight  model  of  the  NASA  Langley  SCAT  15F  Supersonic  Transport  in  the  Full-Scale  Tunnel.  The  SCAT-15  design  still  represents  the 
most  efficient  Supersonic  Transport  configuration. 

and the potential for a dangerous unrecoverable deep-stall trim condition. Many wind tunnel entries were 
conducted at several Langley  facilities in attempts to cure the pitch-up problem, and the free-flight model 
was used to define the effects of airframe geometric modifications. No acceptable combination of airframe 
changes was found for the problem, and the lack of sophisticated fly-by-wire control systems routinely used 
in today’s inherently unstable military and civil aircraft was a major blow to the configuration. Despite being 
analyzed by Boeing under requirements by the FAA, the SCAT-15F was not in contention for the final U.S. 
SST  of the 1970s. The airframe design of the SCAT-15F still represents the most efficient Supersonic 
Transport configuration. 

Vehicle/Store Separation 

One of the more complex and challenging areas in aerospace technology is the prediction of paths of 
aircraft components after the release of items such as external stores, canopies, crew modules, or vehicles 
dropped from mother ships. Aerodynamic interference phenomena between vehicles can cause major 
safety-of-flight issues, resulting in catastrophic impact of the components with the airplane, and unexpected 
pressures and shock waves can dramatically change the expected trajectory of stores. Conventional wind 
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tunnel tests used to obtain aerodynamic inputs for calculations of separation trajectories must cover a 
range of test parameters, and the requirement for dynamic aerodynamic information further complicates the 
task. Measurement of aerodynamic pressures, forces, and moments on vehicles in proximity in wind tun-
nels is a challenging technical procedure. The 
use of dynamically scaled free-flight models can 
quickly provide a qualitative indication of sepa-
ration dynamics, thereby providing guidance for 
wind tunnel test planning and early identification 
of potentially critical flight conditions. 

Time  sequence  of  a  canopy  ejection  test  in  the  Langley  300  mph  7- by 
10-Foot  Wind  Tunnel.  The  staff  of  the  facility  conducted  extensive  sepa-
ration  studies  of  aircraft  stores  and  components  using  a  net  to  catch 
components  released  from  models  under  test. 

Separation testing for military aircraft compo-
nents using dynamic models at Langley evolved 
into a specialty  at the Langley 300 mph 7- by 
10-Foot Tunnel, where subsonic separation 
studies included assessments of the trajectories 
taken by released cockpit capsules, stores, and 
canopies. In addition, bomb releases were  
simulated for several bomb-bay configurations, 
and the trajectories of model rockets fired  
from the wingtips of models were also evalu-
ated. As requests for specific separation  
studies mounted, the staff rapidly accumulated  
expertise in testing techniques for separation  
clearance.75 

Free-flight d rop m odel o f t he X -15 r esearch a ircraft u ndergoes s epara-
tion  testing  beneath  a  B-52  model  in  the  Langley  300  mph  Low-Speed 
7- by  10-Foot  Tunnel.  The  model  was  mounted  under  the  left  wing  of  the 
bomber  for  these  tests  for  visibility. 

One of the more important separation studies 
conducted in the Langley tunnel was an assess-
ment of the launch dynamics of the X-15/B-52 
combination for launches of the X-15. Before the 
X-15, launches of research aircraft from carrier 
aircraft had only been made from the fuselage 
centerline location of the mother ship, and in 
view of the asymmetrical location of the X-15 
under the right wing of the B-52, concern arose 
as to the aerodynamic loads encountered during 
separation and the safety of the launching pro-
cedure. Separation studies were therefore con-
ducted in the Langley 300 mph 7- by 10-Foot 
Tunnel and the Langley High-Speed 7- by 
10-Foot Tunnel.76  Detailed measurements of 
the aerodynamic loads on the X-15 in proximity 
to the B-52 under its right wing were made dur-
ing conventional force tests in the High-Speed 
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Tunnel, while the trajectory of a dynamically scaled X-15 model was observed during a separate investiga-
tion in the Low-Speed Tunnel. The test set up for the low-speed drop tests used a dynamically scaled X-15 
model under the left wing of the B-52 model to accommodate viewing stations in the tunnel. The model used 
conventional Froude-number scaling procedures so that the model and full-scale aircraft translational 
accelerations were equal; therefore, the effects of Mach number could not be determined. Initial trim set-
tings for the X-15 were determined to avoid contact with the B-52, and the drop tests showed that the result-
ing trajectory motions provided adequate clearance for all conditions investigated. 

During successful subsonic separation events, a bomb or external store is released, and gravity typically 
pulls it away safely. At supersonic speeds, however, aerodynamic forces are appreciably higher relative to 
the store weight, shock waves may cause unexpected pressures that severely influence the store trajectory 
or bomb guidance system, and aerodynamic interference effects may cause catastrophic collisions after 
launch. Under some conditions, bombs released from within a fuselage bomb bay at supersonic speeds 
have encountered adverse flow fields, to the extent that the bombs have reentered the bomb bay. In the 
early 1950s, the NACA  advisory committees strongly recommended that focused efforts be initiated by the 
Agency in store separation, especially for supersonic flight conditions. Langley responded with an investi-
gation of supersonic bomb releases at a Mach number of 1.62 in the 9-Inch Supersonic Tunnel.77  The 
dynamic model test examined the effect of various store locations on a swept wing and several bomb-bay 
configurations. Results of the study were among the first to illustrate the adverse interference effects of 
supersonic releases. 

Researchers  within  Langley’s  Pilotless  Aircraft  Research  Division  (PARD)  used  their  Preflight  Jet  facility  at 
Wallops  to  conduct  research  on  supersonic  separation  characteristics  for  several  high-priority  military  pro-
grams.78  The  preflight  facility  was  designed  to  check  out  ramjet  engines  before  rocket  launches,  consisting 
of  a  blow-down–type  tunnel  powered  by  compressed  air  exhausted  through  a  supersonic  nozzle.  The  main 
jet  was  square  in  cross  section  and  was  constructed  in  two  sizes:  12  inches  and  27  inches.  Test  Mach  num-
ber  capability  was  from  1.4  to  2.25.  With  an  open  throat  and  no  danger  to  a  downstream  facility  drive  system, 
the  facility  proved  ideal  for  dynamic  studies  of  bombs  or  stores  after  supersonic  releases.  PARD  devised 
appropriate  scaling  laws  for  the  simulation  of  Mach  number  and  conducted  extensive  separation  tests.79 

One of the more crucial tests conducted in the Wallops Preflight Jet facility was support for the develop-
ment of the Republic F-105 fighter bomber, which was specifically designed with forcible ejection of bombs 
from within the bomb bay to avoid the issues associated with external releases at supersonic speeds. For 
the test program, a half-fuselage model (with bomb bay) was mounted to the top of the nozzle, and the 
ejection sequence included extension of folding fins on the store after release. A  piston and rod assembly 
forcefully ejected the store from the open bomb bay, and high-speed photography documented the motion 
and trajectory of the store. The F-105 program expanded to include numerous specific and generic bomb 
and store shapes requiring almost 2 years of tests in the facility. The ejection tests in the Wallops facility 
were supplemented by force and moment measurements in the Langley 4-Foot Supersonic Tunnel, where 
the aerodynamic loads acting on the store were measured for various positions of the store relative to the 
aircraft. Numerous generic and specific aircraft separation  studies in the Preflight Jet facility from 1954 to 
1959 included F-105 pilot escape, F-104 wing drop-tank separations, F-106 store releases from an internal 
bomb bay, and B-58 pod drops. 
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The national challenge in advancing the state of the art in store separation dynamics was ultimately taken 
over by the research and development establishments within the Air Force and Navy, and NASA’s role was 
minimized after the 1960s. 

Advanced Civil Aircraft 

Most of the free-flight model research conducted by NASA  to evaluate dynamic stability and control within 
the flight envelope has focused on military configurations and a few radical civil aviation designs. This situ-
ation resulted from advances in the state of the art for design methods for conventional subsonic configura-
tions over the years and many experiences correlating results of model and airplane tests. As a result, 
transport design teams have collected massive data and experience bases for transports, which serve as 
the corporate knowledge base for derivative aircraft. For example, companies now have considerable 
experience with the accuracy of their conventional static wind tunnel model tests for the prediction of full-
scale aircraft characteristics, including the effects of Reynolds number. Consequently, testing techniques 
such as free-flight tests do not have high technical priority for such organizations. Conventional civil trans-
port configurations have therefore not been test subjects in NASA  free-flight studies, with the exception of 
special situations, such as poststall motions or wake vortex encounters, to be discussed in later sections. 

The radical Blended Wing-Body (BWB) flying wing configuration has been a notable exception to the 
foregoing trend. Initiated with NASA  sponsorship at McDonnell-Douglas (now Boeing) in 1993, the subsonic 
BWB concept carries passengers or payload within its wing structure to minimize drag and maximize aero-
dynamic efficiency.80  Over the past 16 years, wind tunnel  research and computational studies of various 
BWB configurations have been conducted by NASA–Boeing teams to assess cruise conditions at high 
subsonic speeds, take-off and landing char-
acteristics, spinning and tumbling tenden-
cies, emergency spin/tumble recovery 
parachute systems, and dynamic stability 
and control. In 2000, NASA  and Boeing initi-
ated a flight project to design, fabricate, and 
fly a 35-foot-span remotely piloted model of 
a BWB variant known as the X-48A, with 
flight-testing to take place at Dryden. After a 
year of startup activity, the program was 
canceled by NASA, which redirected its 
research thrusts toward a 12-foot-span 
wind tunnel free-flight model  designed for 
the Full-Scale Tunnel. 

The  Boeing  X-48B  Blended  Wing-Body  configuration  in  flight  at  NASA  
Dryden.  The  configuration  has  undergone  almost  15  years  of  research,  
including  free-flight  testing  at  Langley  and  Dryden.  The  stinger  visible  at  the 
rear  of  the  model  is  used  for  deployment  of  a  parachute  for  emergency  spin 
and  tumble  recovery. 

By  2005,  the  BWB  team  had  conducted 
static  and  dynamic  force  tests  of  models  in 
the  12-Foot  Low-Speed  Tunnel  and  the  14- 
by  22-Foot  Tunnel  to  define  aerodynamic 
data  used  to  develop  control  laws  and 
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control  limits,  as  well  as  trade  studies  of  various  control  effectors  available  on  the  trailing  edge  of  the  wing. 
Free-flight  testing  then  occurred  in  the  Full-Scale  Tunnel  with  the  12-foot-span  model.81  Results  of  the  flight 
test  indicated  satisfactory  flight  behavior,  including  assessments  of  engine-out  asymmetric  thrust  conditions. 

In  2002,  Boeing  contracted  with  Cranfield  Aerospace,  Ltd.,  for  the  design  and  production  of  a  pair  of  21-foot-
span  remotely  piloted  models  of  BWB  vehicles  known  as  the  X-48B  configuration.  After  conventional  wind 
tunnel  tests  of  the  first  X-48B  vehicle  in  the  Langley  Full-Scale  Tunnel  in  2006,  the  second  X-48B  underwent 
its  first  flight  in  July  2007  at  the  Dryden  Flight  Research  Center.  The  BWB  flight-test  team  is  a  cooperative 
venture  between  NASA,  Boeing  Phantom  Works,  and  the  Air  Force  Research  Laboratory.  The  first  11  flight 
tests  of  the  8.5-percent-scale  vehicle  in  2007  focused  on  low-speed  dynamic  stability  and  control  with  wing 
leading-edge  slats  deployed.  In  a  second  series  of  flights,  which  began  in  April  2008,  the  slats  were  retracted, 
and higher-speed studies were conducted. Powered by three model aircraft turbojet engines, the 500-pound 
X-48B  is  expected  to  have  a  top  speed  of  about  140  mph.  A  sequence  of  flight  phases  is  scheduled  for  the 
X-48B,  with  various  objectives  within  each  study  directed  at  the  technology  issues  facing  the  implementation 
of  the  innovative  concept.  The  application  focus  for  the  BWB  configuration  has  changed  from  the  original 
vision  of  a  civil  transport  to  a  long-range,  high-capacity  military  transport  or  tanker. 

NASA’s interest in flight dynamics studies for smaller personal-owner aircraft has been directed at uncon-
ventional configurations that offer advantages in performance, stability, control, or safety. In the 1980s, 
Langley conducted several cooperative studies with famous designer Elbert “Burt” Rutan to explore the 
benefits offered by canard-type general-aviation aircraft. One particular advantage, which has been dem-
onstrated by Rutan’s designs, is the inherent stall-proof nature of properly designed canard aircraft.82  The 
scope of the studies included  full-scale conventional wind tunnel tests of Rutan’s Varieze design, NASA  
pilot evaluations of the flight characteristics of the full-scale Varieze and twin-engine Defiant airplanes, and 
free-flight tests of a dynamic model of the Varieze in the Full-Scale Tunnel.83  The database gathered in the 
studies significantly increased the design information and understanding of the stall- and spin-resistant 
qualities of these successful canard configurations. 

Wake Vortex Hazard 

Since the introduction of large, wide-body civil transports in the mid-1960s, considerable research and 
development has been directed at the potential hazards involved in encounters by light aircraft with the 
trailing vortex wake shed by generator aircraft in the terminal area. The intensity of the vortical flows, which 
is directly related to the weight of the generator aircraft, can result in catastrophic uncontrolled excursions 
at low altitudes for smaller aircraft attempting to penetrate the wake. Regulatory separation distances have 
been invoked to ensure that such encounters are minimized or eliminated during routine airport operations; 
however, they impose a primary constraint on airport throughput and capacity. NASA  has conducted 
research on the wake vortex hazard at Langley and Dryden since the early 1970s in a broad program that 
includes aircraft flight tests to measure the strength and duration of vortex wakes, wind tunnel and flight 
tests to conceive and evaluate the effects of airframe modifications on the problem, computational aero-
dynamic studies to provide guidance for modifications and understanding of vortex properties, and consul-
tation with regulatory agencies. 



85     

As part of this ongoing effort, Langley conducted an exploratory free-flight model study in the Full-Scale 
Tunnel in 1995  to determine  whether the free-flight test technique was useful in wake vortex encounter 
research.84  Objectives of the study were to determine if a free-flight model could be safely and accurately 
flown into wake vortexes generated by a stationary wing, to estimate the rolling moments imposed on the 
following model, and to determine if the rel-
ative severity of the encounter event could 
be categorized depending on the initial 
encounter conditions. The arrangement for 
the free-flight tests consisted of a fixed vor-
tex-generating wing in a forward position 
within the test section and a generic busi-
ness-class free-flight transport model. 
Smoke was used to define the trailing vor-
tex system behind the generator wing in the 
pilots of the following model attempted to fly 
into the vortex from various trajectories. 
The trailing model was instrumented with a 
three-axis rate gyro, a three-axis acceler-
ometer, control position potentiometers, 
and wingtip booms to measure local angle 
of attack and sideslip. Results of the study 
indicated that the wind tunnel free-flight test 
technique could be used to fly a model in 
the vicinity of trailing vortexes, that approxi-
mate values of the induced rolling moment 
on the following model could be determined, 
and that the different responses of the fol-
lowing model to encounter trajectories and 
vortex strengths could be assessed. Based 
on the success of these exploratory tests, 
follow-on tests were conducted in 1995 
(unpublished) to assess the effect of vortex 
encounters on a twin-engine  jet transport 
configuration. 

Free-flight  model  of  the  Rutan  Varieze  canard  airplane  undergoes  
assessments  of  dynamic  stability  and  control  in  the  Full-Scale  Tunnel.  NASA  
researchers  investigated  the  configuration  for  conditions  far  beyond  its  realis-
tic  flight  envelope  to  gather  data  for  canard-type  aircraft. 

Free-flight  model  of  a  generic  business-class  airplane  flies  into  the 
tip  vortex  generated  by  an  isolated  wing  as  part  of  a  study  of  the  
application  of  free-flight  testing  to  studies  of  the  safety  of  flight  issue  in  the 
Full-Scale  Tunnel. 

Towed Vehicles 

Yet  another  application  of  free-flight  mod-
els  has  been  for  assessments  of  the  dynamic 
stability  of  towed  vehicles.  Depending  on  the 
tow  line  and  attachment  point  configurations, 
some  vehicles  exhibit  violent  instabilities 
during  towed  flight,  whereas  they  are 
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dynamically  stable  and  well-behaved  in  free  flight  without  a  tow  line.  The  NACA  and  NASA  received  many 
requests  from  the  military  for  investigations  of  towed  configurations  using  free-flight  model  techniques  in  the 
12-Foot  Free-Flight  Tunnel  and  the  Full-Scale  Tunnel.  The  scope  of  towed-vehicle  studies  included  gliders, 
air-to-air  targets,  minesweepers,  parawing  cargo  delivery  systems,  parasitic  fighters,  objects  on  parachutes 
designed  for  midair  capture  and  retrieval,  and  lifting  bodies.85  

Towing studies started in the Free-
Flight Tunnel in 1943 with experimental 
tests of a glider towed by twin towlines 
accompanied by a theoretical study of 
the stability of the configuration.86  Later 
during the war, the Army/Air Forces 
requested support testing of the Corne-
lius XFG-1 towed fuel glider and poten-
tial tow arrangements for the Lockheed 
P-80A  aircraft.87  More glider requests 
came from the Navy in 1948.88  Addi-
tional testing was provided in response 
to an Air Force request for dynamic sta-
bility characteristics of the Republic 
F-84E under tow and a similar Navy 
request for the Chance Vought F7U 
Cutlass in towed flight.89 

Concept Demonstrators 

The  efforts  of  the  NACA  and  NASA  in  developing  and  applying  dynamically  scaled  free-flight  model  testing 
techniques  have  matured  impressively.  Although  the  scaling  relationships  have  remained  constant  since  the 
inception  of  free-flight  testing,  the  facilities  and  test  attributes  have  become  dramatically  more  sophisticated. 
The  size  and  construction  of  models  have  changed  from  unpowered  balsa  models  weighing  a  few  ounces 
with  wingspans  of  less  than  2  feet  to  large  powered  composite  models  weighing  over  1,000  pounds.  Control 
systems  have  changed  from  simple  solenoid  bang-bang  controls  operated  by  a  pilot  with  visual  cues  provided 
by  model  motions  to  hydraulic  systems  with  digital  flight  controls  and  full  feedbacks  from  an  array  of  sensors 
and  adaptive  control  systems.  The  level  of  sophistication  integrated  into  the  model  testing  techniques  has 
given  rise  to  a  class  of  free-flight  models  that  are  considered  to  be  integrated  concept  demonstrators  rather 
than  specific  technology  tools.  Thus,  the  line  between  free-flight  models  and  more  complex  remotely  piloted 
vehicles  has  become  blurred,  with  a  noticeable  degree  of  refinement  in  the  concept  demonstrators. 

Research  activities  at  the  NASA  Dryden  Flight  Research  Center  illustrate  how  far  free-flight  testing  has 
come.  Since  the  1970s,  Dryden  has  conducted  a  broad  program  of  demonstrator  applications  with  emphasis 
on  integrations  of  advanced  technology.  In  addition  to  the  previously  discussed  X-48B  program,  two  other 
Dryden  projects,  the  Highly  Maneuverable  Aircraft  Technology  (HiMAT)  program  and  the  X-36  program,  are 
related  to  the  main  theme  of  this  document  on  research  for  dynamic  stability  and  control  of  advanced  vehicles. 

The  author  observes  low-speed  tow  stability  tests  of  a  free-flight  model  of  the 
Ames  M2-F1  lifting  body  in  the  Full-Scale  Tunnel  in  1962. 
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After the success of the exploratory remotely 
piloted vehicle  project using  the three-eighths-
scale unpowered F-15 Spin Research Vehicle, 
Dryden accelerated its efforts in the development 
of remotely piloted research vehicle (RPRV) tech-
nologies in the cooperative HiMAT  program with 
the Air Force Flight Dynamics Laboratory in 1979.90  
The objective  was to demonstrate integrated 
advanced fighter technologies such as advanced 
composites and aeroelastic tailoring, close-cou-
pled canards, and winglets. Launched from a B-52 
mother ship at altitudes of about 45,000 feet, the 
HiMAT  remotely piloted research vehicle was 
about half the size of an F-16 fighter and was pow-
ered by a J85 jet engine. Designed by the team of 
Ames, Dryden, and Rockwell International, the configuration demonstrated twice the turn rate capability of 
the F-16 at transonic speeds. An onboard digital computer provided fly-by-wire control capabilities, includ-
ing propulsive control. The vehicle was designed with relaxed static stability (from 10- to 30-percent unsta-
ble) and direct force control, and active control was a major area of emphasis in the research flights. Two 
HiMAT vehicles conducted 26 flight tests during the program. 

The  HiMAT  remotely  piloted  research  vehicle  flies  over  Edwards  Air 
Force  Base.  In  its  role  as  an  advanced  technology  demonstrator, 
the  vehicle  incorporated  a  highly  sophisticated  flight  control  system, 
a  canard,  winglets,  aeroelastic  tailoring,  and  relaxed  static  stability. 

The HiMAT  program produced extensive infor-
mation regarding the flight dynamics characteris-
tics of a radically new configuration for highly 
maneuverable aircraft. In addition to results on 
aeroelastic tailoring, automated flight maneuvers 
for extraction of aerodynamic data, and remote-
piloting technologies for supersonic aircraft, the 
study inspired aircraft design features. For exam-
ple, designers of the Grumman X-29 forward-
swept wing research aircraft employed much of 
the technology from the HiMAT  experiments, 
including a close-coupled canard, relaxed static 
stability, and lightweight composite materials.91 

NASA  research  pilot  Bill  Dana  flies  the  HiMAT  vehicle  from  a  fixed-
base  ground  cockpit. 

In 1997, another milestone was achieved at Dryden in remotely piloted research vehicle technology when 
a NASA–Boeing X-36 vehicle demonstrated the feasibility of using advanced technologies to ensure satis-
factory flying qualities for radical tailless fighter designs. The X-36 was designed as a joint effort between 
the NASA  Ames Research Center and Boeing Phantom Works (previously McDonnell-Douglas) as a 0.28-
scale powered  free-flight model of an advanced fighter without vertical or horizontal tails to enhance surviv-
ability. Powered by a F112 turbofan engine and weighing about 1,200 pounds, the 18-foot-long configura-
tion used a canard, split aileron surfaces, wing leading- and trailing-edge flaps, and a thrust-vectoring 
nozzle for control. A  single-channel digital fly-by-wire system provided artificial stability for the configuration, 
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The  X-36  tailless  advanced  fighter  flight  demonstrator  in  flight  at  NASA  Dryden.  The  radical  configuration  conducted  a  successful  flight 
investigation  in  one  of  the  more  remarkable  remotely  piloted  vehicle  programs  at  Dryden. 

which was inherently unstable about the pitch and yaw axes. For the first time, a microphone was carried 
onboard a powered free-flight model in the cockpit area of the X-36. The aural cues provided alerts to the 
pilot for engine  stalls or other propulsion-related problems. The ground-based pilot used a fighter-type cock-
pit outfitted with a standard head-up display and a moving-map representation of the location of the X-36 in 
a successful series of 31 subsonic research flights, during which the vehicle reached an altitude of about 
20,000 feet and a maximum angle of attack of 40 degrees.  The pilot’s crew station was in a ground control 
station trailer, where distractions were minimized.92 

Summary 

This overview of over 80 years of applications of free-flight dynamically scaled models for assessments 
of the dynamic stability and control characteristics of full-scale vehicles has discussed the remarkable 
advances that the NACA  and NASA  have made in conducting and correlating results of the studies. The 
impact of the model results for advanced military and civil aircraft, spacecraft, and utility vehicles has influ-
enced the development of new aircraft, provided an early identification of problems and potential solutions, 
and reduced the risk of subsequent full-scale flight tests. 
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FLIGHT AT HIGH ANGLES OF ATTACK  

The first efforts in aircraft stability and control concentrated on providing satisfactory characteristics within 
the flight envelope, especially  for cruise conditions. Rapid progress was made in the development and 

validation of theoretical prediction methods, test procedures and the interpretation of conventional wind 
tunnel test data, flight-test procedures for full-scale aircraft, and the development and use of dynamically 
scaled free-flight models. However, from the earliest days of heavier-than-air flying machines, it was recog-
nized that critical conditions were encountered during flight at high angles of attack near wing stall, where 
flow separation on the wing might create unacceptable—even catastrophic—stability and control problems. 
Such problems often occurred at low altitudes during take-off and landing, resulting in loss of control with 
insufficient altitude for recovery. Analysis of the critical factors that influenced flight behavior at high angles 
of attack was difficult because of the nature of the complex separated-flow aerodynamic phenomena 
encountered near stall and higher angles of attack. As a consequence of the poor state of aerodynamic 
understanding, design methods were essentially nonexistent. An alarming increase in fatal stall/spin acci-
dents in the 1930s resulted in a high priority being placed on obtaining reliable predictions early in the 
design process. As a result of the relative immaturity of theoretical methods, the application of dynamically 
scaled free-flight models for research on high-angle-of-attack flight behavior became recommended for 
general research and evaluations of specific aircraft. Applications of dynamic models by NASA in this area 
have continued to the present day. 

Early NACA  free-flight studies in the Langley 12-Foot Free-Flight Tunnel routinely included assessments 
of the dynamic stability and controllability of models for a range of angles of attack, including values  
associated with maximum lift and stall. In the 1930s and 1940s, aircraft configurations rarely used swept-
back wings, and the primary problems observed in the tunnel tests for high-angle-of-attack conditions  
typically included degraded roll control effectiveness caused by adverse yawing moments created by  
aileron deflections and abrupt, uncontrollable roll-off at stall caused by sudden asymmetric stalling of the 
wing. On occasion, configurations exhibited lightly damped Dutch roll lateral-directional oscillations with 
unacceptable rolling and yawing excursions at high angles of attack. 
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When  early  NACA  research  on  the  stability  and  control  characteristics  of  swept  wing  configurations  encountered  problems  caused  by  tip 
stall  at  high  angles  of  attack,  several  radical  concepts  were  evaluated  to  minimize  the  problem.  This  free-flight  model  was  used  for  flight 
investigations  of  a  “W”  wing  configuration  with  unswept  outer  wing  panels  in  an  attempt  to  alleviate  tip  stall. 

As  previously  discussed,  results  obtained  with  the  early  free-flight  models  were  correlated  with  full-scale 
aircraft  flight  results  to  establish  the  validity  of  the  testing  technique.  In  most  cases,  the  relatively  low  Reynolds 
number  of  the  model  tests  resulted  in  a  lower  magnitude  of  aerodynamic  moments  produced  by  control  sur-
faces  and  a  lower  angle  of  attack  for  stall.  Nonetheless,  the  model  tests  were  viewed  as  a  reliable  qualitative 
indicator  of  gross  problems,  and  free-flight  test  results  provided  a  valuable  awareness  of  potential  problems. 
The  tests  also  permitted  a  rapid  assessment  of  candidate  solutions  before  full-scale  flight  tests.  In  general,  the 
free-flight  models  exhibited  characteristics  similar  to  the  full-scale  aircraft  during  high-angle-of-attack  flight 
conditions  and  stalls;  however,  the  model  behavior  usually  occurred  at  a  slightly  lower  angle  of  attack.1 

During the late 1940s and 1950s, the introduction of radical configurations with swept and delta wings 
resulted in more issues for flight at high angles of attack. The use of sweptback wings resulted in spanwise 
flow over the wing at moderate and high angles of attack, causing separated flow on the outer wing and 
dramatic losses of aileron effectiveness and longitudinal instability (“pitch-up”) within the intended opera-
tional envelope. Wing sweep  also produced excessive levels of effective dihedral for many configurations 
and resulted in aggravation of Dutch roll tendencies. In response to these challenges, the NACA  introduced 
generic research projects to provide design guidelines for acceptable levels of stability and control for swept 
wing aircraft, and to conceive and evaluate the effectiveness of geometric modifications (such as wing 
fences) to minimize or eliminate the adverse flow properties. After intense free-flight model research had 
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been accomplished with generic swept wing configurations, requests began to be received from the Air 
Force and Navy for evaluations of new fighters such as the McDonnell XF3H-1 Demon (the first swept wing 
fighter built by McDonnell).2 

Along with emphasizing effects of sweptback wings on dynamic stability, the NACA  researchers in the 
Free-Flight Tunnel started major research investigations on delta wings. Assessments of the high-angle-of-
attack dynamic stability and control characteristics of delta wing configurations in 1948 indicated fairly good 
characteristics for models having delta wings with sweep-back angles from 50 to 60 degrees, although the 
relatively low lift-to-drag ratios for such low aspect ratios (2 or 3) resulted in steep power-off glide angles. 
When the wing  leading-edge sweep of the delta wing models was increased to 70 or 80 degrees (aspect 
ratio of 1 or less), the stability and control characteristics became unsatisfactory because of large, constant-
amplitude rolling oscillations at high angles of attack, ineffective roll control, and an abrupt onset of pitch-up 
instability as angle of attack was increased.3  These pioneering studies of the dynamic stability and control 
of swept wing and delta wing free-flight models uncovered physical phenomena and aircraft characteristics 
that were impossible to predict with conventional static force test techniques. Similar dynamic stability and 
control characteristics soon became major issues for emerging highly swept- and delta-type aircraft con-
figurations for high-angle-of-attack conditions. After the NACA’s basic research was disseminated, the mili-
tary services requested free-flight tests at Langley for several new delta wing aircraft, including the Douglas 
XF4D-1 Skyray and the Convair F-102 Delta Dagger.4 

The investigations conducted in the Free-Flight Tunnel on dynamic stability and control of the early fight-
ers of the 1950s provided confidence that the behavior of swept-and delta-configurations might be satisfac-
tory for operational aircraft and pointed the way to solutions for unexpected problems. In addition, two 
important general results were identified by the research. One lesson was that aircraft configurations with 
swept wings having relatively  sharp leading edges did not exhibit the large Reynolds number effects on 
stability and control at high angles of attack (below maximum lift) as had been experienced with the older 
aircraft designs. Based on correlations with full-scale results and data accumulated over the last 50 years, 
it appears that free-flight models have exhibited amazingly accurate predictions of high-angle-of-attack 
behavior for this type of aircraft. An example of the accuracy of low Reynolds number free-flight tests in 
predicting full-scale aerodynamic stability and control behavior was NASA  tests of the F-4 Phantom II 
fighter.5  In that research effort, conventional static wind tunnel data were measured in the NASA  Ames 
12-Foot Pressure Tunnel at high values of Reynolds number and correlated with model force tests in the 
Free-Flight Tunnel at Langley. For that particular configuration at high-angle-of-attack, subsonic conditions, 
the free-flight F-4 model tested in the Full-Scale tunnel accurately predicted the angle of attack for maxi-
mum lift, lateral and directional stability, and aerodynamic control characteristics. 

The second major result was the experience gained in understanding and predicting instabilities at high 
angles of attack. In particular, coordinated efforts by Langley researchers in several organizations to com-
pare conventional wind tunnel force and moment measurements with the dynamic free-flight test observa-
tions led to the development and validation of predictive criteria for two of the more significant instabilities 
encountered at high angles of attack—pitch-up and directional divergence (“nose slice”). Directional diver-
gence is a condition at high angles of attack in which massive flow separation on the wing reduces the 
ability of the vertical tail to maintain “weather-vane” stability for the aircraft. Because the separated flow field 
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results in the impingement of low-energy airflow at the tail location, the magnitude of the stabilizing contri-
bution of the tail is reduced. In addition, for certain configurations, the airflow around the separated flow 
area can result in an adverse flow direction at the rear of the aircraft, such that the contribution of the verti-
cal tail to stability becomes destabilizing. That is, when the aircraft is sideslipped to the left, the airflow at 
the vertical tail location is from the left, creating a yawing moment to increase the sideslip angle. When nose 
slice occurs, it can be violent and abrupt, resulting in loss of control, disorientation of the pilot, and spin 
entry. The staff of the Free-Flight Tunnel and other Langley research organizations cooperatively developed 
a predictive theoretical method that is still used today to predict the potential presence of directional diver-
gence instability based on conventional static wind tunnel data.6 

The  previously  described  Free-Flight  Tunnel  experiences  of  1948  with  large-amplitude  limit-cycle  roll  oscil-
lations  at  high  angles  of  attack  for  highly  swept  delta  wings  did  not  warrant  great  interest  at  the  time  because 
such  configurations  were  not  under  widespread  consideration.  However,  as  will  be  discussed  in  later  sections, 
the  susceptibility  of  highly  swept  designs  to  the  roll  instability  phenomenon  became  important  with  the  advent 
of  hypersonic  configurations  and  high-performance  fighter  aircraft  with  chined  forebodies. 

In 1959, free-flight model testing moved to 
the Langley Full-Scale Tunnel, with continued 
emphasis on high-angle-of-attack studies for 
advanced aerospace vehicles. One of the first 
high-priority requests came from the Air Force 
for studies of the dynamic stability and control 
characteristics of the delta wing Convair B-58 
Hustler bomber early in its developmental 
cycle.7  Results of the free-flight test in the Full-
Scale Tunnel indicated that the B-58 would 
have generally  satisfactory low-speed longitudi-
nal characteristics; however, at high angles of 
attack near maximum lift (about 30 degrees), 
the model exhibited a severe directional diver-
gence, implying that the full-scale aircraft might 
be susceptible to loss of control or spin entry 
when flown near that condition. Later in its 
operational history, the B-58 was involved in several inadvertent spin incidents, some of which were fatal. 
Langley later conducted catapult-launched model studies of the spin entry and spinning characteristics of 
the B-58, and its susceptibility to directional divergence as predicted by the free-flight model was  
confirmed.8 

Free-flight  model  of  the  Convair  XB-58  bomber  is  prepared  for  dynamic 
stability  and  control  evaluations  in  the  Full-Scale  Tunnel. 

In the early 1960s, the focus of free-flight testing in the Full-Scale Tunnel centered on dynamic stability 
studies of V/STOL  aircraft and reentry lifting bodies. High-angle-of-attack behavior was not a critical issue 
for horizontal-attitude V/STOL  configurations, but vertical-attitude tail-sitter designs necessarily transitioned 
through large ranges of angle  of attack during conversion  maneuvers, from hovering to conventional for-
ward flight. Lifting reentry configurations also fly at high angles of attack during typical missions on return 
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from space, and the design of such vehicles requires accurate predictions of dynamic stability and control 
characteristics across the angle-of-attack range from reentry at hypersonic speeds to landings at subsonic 
speeds. As previously discussed, subsonic free-flight tests were conducted in the Full-Scale Tunnel for the 
X-15 with emphasis on the stability and control of the vehicle at high angles of attack. The most significant 
result of the test program was the verification that differential deflections of the horizontal tail could be used 
for roll control. 

Other families of candidate reentry shapes were flown in the Full-Scale Tunnel, including the proposed 
Air Force X-20 Dyna-Soar hypersonic glider, lifting bodies, and generic NASA-conceived hypersonic con-
figurations. Two common characteristics of all 
these test subjects were a highly swept lifting 
surface and a “fuselage heavy” inertial distribu-
tion with most of the mass along the fuselage. 
As a result of these physical properties, reentry 
vehicles of the glide-landing type were typically 
sensitive to aerodynamic parameters acting 
about the roll axis, and most were found to be 
susceptible to lightly damped or unstable roll 
oscillations at moderate and high angles of 
attack.9  The early detection of lateral instabili-
ties provided a warning that artificial roll damp-
ing would be required for satisfactory behavior, 
and the flight models demonstrated that the 
motions could be stabilized with artificial damp-
ing in roll provided by rate gyroscopes. For 
some hypersonic boost-glide  models, adverse 
yaw from lateral control surfaces coupled with 
the roll instabilities to constrain the usable 
range of angle of attack. Conventional and 
dynamic force tests of the models provided 
aerodynamic data used as inputs for simulator 
and control system studies in other NASA  
research organizations and industry. 

Free-flight  tests  of  highly  swept  hypersonic  boost-glide  configurations 
demonstrated  that  the  designs  would  exhibit  lightly  damped,  large-ampli-
tude  rolling  motions  at  high  angles  of  attack.  Artificial  roll-rate  stabilization 
eliminated  the  oscillations  and  provided  good  flight  behavior.  This  photo-
graph  from  1957,  made  before  the  major  move  of  the  12-Foot  Free-Flight 
Tunnel  staff  to  the  Full-Scale  Tunnel,  shows  the  rudimentary  implementa-
tion  of  the  flight-test  technique  with  the  crew  on  an  open  balcony. 

The phenomenon of lightly damped roll oscillations at high angles of attack for highly swept configura-
tions had first been identified by the previously discussed 1948 tests of delta wing models with sweep 
angles of 80 degrees or more in the Free-Flight Tunnel. The experiences with lifting reentry shapes led to 
more detailed aerodynamic and theoretical analyses and a better understanding of the factors causing the 
instability. Static and dynamic wind tunnel force tests revealed that a complex, time-dependent vortical-flow 
phenomenon was created on the upper surfaces of the wings, resulting in high levels of effective dihedral 
and unstable dynamic roll damping. Over the years, this flow situation has been observed in free-flight tests 
of many highly swept models and has precipitated additional research to mathematically model the “wing 
rock” characteristics exhibited by the models.10 
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Fighters 

In the late 1950s and early 1960s, NACA  and NASA  free-flight model testing of fighter configurations had 
been limited by a strong military perspective that high-angle-of-attack capability was not a primary design 
requirement. Instead, military planners envisioned future conflicts to be long-range missile engagements in 
which the combatants did not even make visual contact. Stringent maneuvers and flight at high angles of 
attack would not be required,  and exposure to any potential loss of control would be avoided. At the same 
time, however, the services required classic intentional spin and recovery demonstrations to ensure satis-
factory spin recovery. These military philosophies had a large impact on free-flight testing of fighters at 
Langley, resulting in separate, largely uncoordinated testing in the Free-Flight Tunnel and the Spin Tunnel. 
This situation would change in the mid-1960s. 

As U.S. military air forces entered the era of the Vietnam conflict, they were faced with a major deficiency 
in first-line fighter and attack aircraft. In Vietnam, close-in traditional dogfights frequently occurred, requiring 
extreme maneuverability and good handling characteristics  at high angles of attack. Unfortunately, many of 
the Nation’s aircraft, such as the F-4 Phantom II, F-100 Super Sabre, and A-7 Corsair II, exhibited severe 
deficiencies in lateral-directional stability and control at high angles of attack, resulting in loss of control, 
unintentional spins, and poor spin recovery characteristics. During their development cycles, these designs 
had been subjected to extensive wind tunnel tests to tailor their performance capabilities and to spin tunnel 
tests to evaluate spinning and spin recovery behavior. However, because their expected operational mis-
sions did not require flight at high angles of attack, wind tunnel tests for high-angle-of-attack and stall char-
acteristics were limited or nonexistent. 

By the mid-1960s, the number of fighter-attack aircraft and aircrews lost in stall/spin accidents had 
increased alarmingly, with over 250 aircraft lost by the Air Force, Navy, and Marines from 1965 to 1971.11 

Several major events occurred as a result of this national  problem that would impact the role of dynamic 
free-flight models in fighter development programs. The military at the highest levels became aware of the 
situation and called for a national effort to improve the high-angle-of-attack stability and control of existing 
and future aircraft. In responding to this urgency, industry and DOD began to emphasize high-angle-of-
attack capabilities, improve and verify design methods, and coordinate testing techniques. Spurred on by 
the intensity of this national effort, a philosophy emerged in the 1970s that focused on the prevention of loss 
of control at high angles of attack, rather than recovery from inadvertent spins. In other words, it was ratio-
nalized that emphasizing spin and recovery demonstrations during aircraft development programs was 
working the wrong end of the problem, and that more emphasis should be placed on providing satisfactory 
handling characteristics during appropriate high-angle-of-attack maneuvers at the edge of the envelope. 
The military philosophy had changed from avoiding flight at high angles of attack to demanding carefree 
maneuver capability under those conditions. 

With this background, NASA, DOD, and industry formulated an extensive attack on the development of 
high-angle-of-attack technology, with a key role identified  for NASA’s unique dynamic model test tech-
niques. The NASA  relationships with DOD and industry that emerged in this late 1960s challenge rapidly 
matured, to the point that nearly all new DOD highly maneuverable aircraft configurations underwent coor-
dinated testing at Langley in wind tunnel free-flight tests, spin tunnel tests, and outdoor drop-model tests. 
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Previously, testing at Langley  had centered on spin tunnel activities, but in the new approach, free-flight 
testing also became a vital new component of the test programs, with much more emphasis on spin preven-
tion. The model tests were coordinated with, and augmented by, conventional testing in other wind tunnels 
at Langley and Ames as well as flight research at Dryden. This Government-industry relationship flourished 
for over 35 years and included high-angle-of-attack free-flight model tests in the Langley Full-Scale Tunnel 
for the F-4, F-5, F-14, F-15, F-111, YF-16, YF-17, F-16, F-16XL, F/A-18C, X-29, XFV-12A, EA-6B, YF-22, 
YF-23, X-31, F/A-18E, and F-22. In addition to the fighter test activities, high-angle-of-attack free-flight tests 
were conducted in response to an Air Force request for the B-1 bomber. Overviews of the test programs are 
discussed in Partners in Freedom, and references for technical details are provided herein.12 

Langley’s free-flight model tests of specific DOD fighter aircraft played a key role in the early phases of 
aircraft development programs by reducing risk and instilling confidence before full-scale flight tests. All of 
the tests were witnessed by key industry representatives, who quickly absorbed the results and dissemi-
nated them within the design teams. These technical contributions included early identifications of potential 
dynamic stability and control problems observed during the model flights and aerodynamic data measured 
with the same model during supporting force and moment tests at the same flight conditions. Industry 
greatly appreciated this unique source of preflight information, and the free-flight testing technique and 
NASA’s expertise in conducting and interpreting the results were widely sought. 

Examples of the technical results and lessons learned in the free-flight tests are noteworthy. In the case 
of the F-4, the Air Force approached NASA  for assistance  in defining the major factors causing poor high-
angle-of-attack behavior and an alarming increase in loss-of-control accidents. Ironically, the F-4 had been 
in service for years before aerodynamic data at high angles of attack were measured in tunnel tests at 
Langley.13  Operational experience with the F-4 had shown that, as angle of attack was increased at sub-
sonic maneuvering conditions, lightly damped roll 
oscillations were encountered, which continued to 
build to large amplitudes on the order of plus or 
minus 20 degrees. If the pilot forced the aircraft to 
even higher angles of attack, the F-4 would sud-
denly exhibit directional divergence, abruptly 
switching nose for tail, and enter an incipient spin. 
The departure from controlled flight was also 
aggravated by unsatisfactory adverse yaw from 
aileron deflections. When free-flight model tests of 
the F-4 were conducted in the Full-Scale Tunnel, 
the model faithfully reproduced all of these phe-
nomena, including visible adverse yaw, large-
amplitude wing rock, and a directional divergence 
that required quickly removing the out-of-control 
model from the tunnel airstream. Free-flight  tests  of  this  model  of  the  F-4  Phantom  II  in  1970  provided 

data  for  analysis  of  the  wing  rock  and  directional  divergence  exhibited 
by  the  configuration  at  high  angles  of  attack.  The  test  program  also 
included  demonstrations  of  the  benefits  of  two-position  fixed  leading-
edge  slats,  which  were  incorporated  in  later  versions  of  the  airplane. 

Analysis of supporting force and moment test 
data measured with the free-flight model provided 
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substantial information on the causes and potential cures for the deficient characteristics. As the analysis 
progressed, military interest was building for a derivative of the baseline F-4 configuration, which would 
include wing leading-edge slats to improve maneu-
verability during dogfights. Extensive testing of the 
configuration had been conducted during conven-
tional wind tunnel tests by McDonnell-Douglas 
and Langley in the Langley High-Speed 7- by 
10-Ft Tunnel, and free-flight evaluations were 
requested to assess the impact on dynamic stabil-
ity and control. Flight tests of the slatted wing con-
figuration in 1970 indicated substantial improve-
ment in high-angle-of-attack characteristics, 
including reduced wing-rock oscillations and 
delayed tendency toward directional divergence. 
When the advanced configuration, known as the 
F-4E, entered service, these enhanced character-
istics were evident. 

During  the  free-flight  model  support  activities  for  the  development  of 
the  F-111  aircraft,  the  model  was  subjected  to  preflight  conventional 
force  tests  in  the  12-Foot  Low-Speed  Tunnel  to  obtain  aerodynamic 
stability  and  control  data  at  high  angles  of  attack.  Force  tests  such  as 
these  were  routinely  conducted  before  models  were  subject  to  flight 
tests  in  the  Full-Scale  Tunnel. 

Free-flight  tests  of  the  General  Dynamics  F-111  in 
the  Full-Scale  Tunnel  in  1964  and  1965  uncovered 
a  similar  directional  divergence  problem  for  certain 
wing  configurations,  and  the  severity  of  the  direc-
tional  divergence  made  an  impression  on  visiting 
pilots  who  were  slated  to  conduct  full-scale  flight 
tests  for  high  angle  of  attack.  In  addition  to  alerting 
the  flight-test  organization  to  the  potential  problem, 
the  results  stimulated  the  F-111  aircraft  designers  to 
develop  a  stall-inhibitor  capability  in  the  flight  control 
system  to  artificially  limit  the  maximum  obtainable 
angle  of  attack  and  thereby  avoid  the  divergence. 

Free-flight  tests  of  the  F-111  model  in  1965  demonstrated  the  severity 
of  the  directional  divergence  encountered  for  certain  values  of  wing 
sweep  at  high  angle  of  attack.  This  photographic  sequence  shows 
the  model  in  flight  for  forward,  mid,  and  aft  wing-sweep  positions. 

DOD free-flight model test program was con-
ducted during the competitive Air Force Light-
weight Fighter program in the mid-1970s. 
Free-flight investigations of the high-angle-of-
attack dynamic stability and control characteristics 
of the General  Dynamics (now Lockheed Martin) 
YF-16 and the Northrop (now Northrop Grumman) 
YF-17 configurations provided critical technical 
data to each of the industry flight-test teams and 
for the Air Force evaluation team, which ultimately 
selected the YF-16 for development. The results 

Another particularly successful NASA–industry– 
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of the free-flight test of the YF-16 
were especially valuable because 
they identified a severe nose-slice 
tendency for the configuration at 
angles of attack slightly beyond 
maximum lift. Fortunately, the 
YF-16 design team at General 
Dynamics had anticipated the prob-
lem based on the previously dis-
cussed NASA-developed criterion 
for prediction of directional diver-
gence. Its analysis showed  that  
an angle-of-attack-limiting system 
would prohibit the full-scale aircraft 
from reaching the critical angle of 
attack yet provide superior maneu-
verability in air combat. 

Free-flight  tests  of  the  YF-16  Lightweight  Fighter  Prototype  demonstrated  outstanding 
dynamic  stability  control  characteristics  within  the  design  envelope.  The  results  also 
clearly  identified  a  severe  directional  divergence,  which  occurred  for  high  angles  of  
attack  beyond  achievable  values  limited  by  the  flight  control  system. 

In a broad cooperative research 
program with General Dynamics to 
develop a supersonic-cruise  ver-
sion of the F-16 in the 1980s,  
Langley researchers used free-
flight testing in the Full-Scale Tun-
nel to identify major stability and 
control issues at high angles of 
attack for the cranked wing F-16XL  
configuration. Results of the model 
flight tests identified unacceptable 
pitch-up and directional-divergence 
instabilities for the original design. 
After additional joint testing and 
free-flight evaluations, geometric 
modifications were made to the 
F-16XL  configuration wing apex 
area and wing upper surface, which 
significantly improved its character-
istics and resulted in outstanding 
behavior at high angles of attack. 
Subsequently, full-scale flight tests 
verified the highly satisfactory char-
acteristics predicted by the model 
flight tests. 

Configuration  modifications  to  the  General  Dynamics  F-16XL  aircraft  included  geometric 
shaping  of  the  wing  apex  area  and  wing  fences.  These  modifications  were  derived  from 
highly  successful  free-flight  and  force  tests  conducted  in  the  Full-Scale  Tunnel  in  1981. 
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The  Grumman  X-29  Advanced  Technology  Demonstrator  research  airplane  provided  a  challenge  for  the 
free-flight  model  technique  in  the  Full-Scale  Tunnel  during  the  early  1980s.14  The  X-29  was  designed  with  a 
large  level  of  aerodynamic  instability  in  pitch  (relaxed  static  stability)  that  made  the  use  of  artificial  stability  and 
control  mandatory  for  meaningful  model  tests.  The  magnitude  of  the  instability  was  by  far  the  highest  ever 
attempted  with  a  free-flight  model.  Accepting  the  challenge,  the  research  staff  configured  the  updated  digital 
computer  used  in  free-flight  testing  to  replicate  the  sta-
bilizing  features  of  the  full-scale  airplane  flight  control 
system.  The challenge was met by using an angle-of-
attack  vane  sensor  on  the  model’s  nose  boom  for 
feedback  inputs  to  the  computer  in  an  arrangement 
that  worked  flawlessly  through  the  flight-test  program. 
With  that  experience,  the  free-flight  wind  tunnel  model 
technique  had  progressed  to  its  most  sophisticated 
level  of  capability. 

The  ability  to  conduct  free-flight  model  tests  of  the  X-29  research 
aircraft  required  a  significant  upgrade  in  Langley’s  testing  tech-
nique  to  replicate  the  artificial  stability  provided  by  the  flight  con-
trol  system  of  the  full-scale  aircraft.  High-angle-of-attack  flight 
tests  of  the  model  were  conducted  in  1980. 

In  1989,  free-flight  tests  of  the  Lockheed  Martin 
YF-22  prototype  provided  what  proved  to  be  accurate 
predictions  of  the  unprecedented  high-angle-of-attack 
capabilities  of  the  full-scale  aircraft.  After  years  of  coor-
dinated  activities  in  the  newly  integrated  high-angle-of-
attack  and  spin  research  organizations  at  Langley,  the 
YF-22  model  efforts  were  especially  effective  and 
resulted  in  a  formal  letter  of  recognition  and  thanks  to 
NASA  from  the  management  of  Lockheed  Martin.15  
After  the  competitive  contract  between  the  YF-22  and 
YF-23  aircraft  was  awarded  to  the  YF-22  organization, 
no  request  was  made  for  traditional  free-flight  model 
tests  in  the  Full-Scale  Tunnel.  Rather,  a  typical  free-
flight-sized  model  was  used  in  static  and  dynamic  force 
testing  at  Langley  to  support  the  F-22  development 
program. 

Free-flight  model  tests  of  the  YF-22  prototype  in  1989  had  dem-
onstrated  outstanding  stability  and  control  characteristics  at  high 
angles  of  attack,  which  were  subsequently  verified  in  the  com-
petitive  evaluation  flight  tests  of  the  aircraft.  The  follow-on  F-22 
program  did  not  request  a  NASA  free-flight  study,  but  a  conven-
tional  force-test  program  was  conducted  in  the  Full-Scale  Tunnel 
in  1992  with  a  model  similar  to  those  used  in  free-flight  testing. 

In addition to providing support for specific aircraft 
development programs, NASA’s interest in high-
angle-of-attack technology led it to develop a major 
intercenter research program  to advance the state of 
the art in experimental, computational, and flight-
testing methods. The  program  also  addressed  emerg-
ing  technologies  such  as  thrust  vectoring  and  fuse-
lage-forebody  flow-control  concepts  for  improved 
capabilities  at  high  angles  of  attack.  Participation  in 
the  NASA  program  included  the  Langley,  Dryden, 
Ames,  and  Lewis  (now  Glenn)  Research  Centers.  The 
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NASA  High-Alpha  Technology  program  used  the  F/A-18  configuration  as  the  focus  of  its  research  efforts  and 
included  extensive  tests  with  free-flight  models.  Free-flight  model  tests  in  the  Full-Scale  Tunnel  had  been 
conducted  at  the  request  of  the  Navy  in  support  of  the  F/A-18  development  program,  and  NASA  researchers 
used  results  from  that  program  and  correlation  with  known  full-scale  flight  characteristics  as  baseline  data  for 
comparison  with  benefits  provided  by  radical  new  technologies  in  the  NASA  research  program.16 

In  the  1980s,  two  breakthrough  concepts  emerged 
that  would  prove  to  revolutionize  high-angle-of-attack 
technology.  The  first  revolution  was  the  routine  use  of 
advanced  digital  fly-by-wire  flight  control  systems  to 
provide  unprecedented  maneuverability  at  high  angles 
of  attack.  Such  concepts  used  various  combinations  of 
control  surfaces  to  simultaneously  enhance  aircraft 
responses  to  pilot  inputs  while  preventing  loss  of  con-
trol  and  inadvertent  spin  entry.  The  second  critical  tech-
nology  was  the  development  of  thrust-vectoring  con-
cepts  for  enhanced  controllability  and  stability  for 
high-angle-of-attack  conditions.  Thrust  vectoring  pro-
vided  unprecedented  levels  of  control  power  when  the 
effectiveness  of  conventional  control  surfaces  markedly 
deteriorated  at  high  angles  of  attack.  Together  with  the 
development  of  engines  that  could  operate  reliably  at 
high  angles  of  attack  and  sideslip,  vectoring  offered 
new  options  for  control.  Free-flight  models  proved  to  be 
an  effective  approach  to  evaluate  and  demonstrate  the 
impressive  capabilities  provided  by  these  technologies. 

As  interest  in  thrust  vectoring  intensified  in  the  1980s,  other 
Langley  organizations  designed  supersonic  advanced  configu-
rations  using  thrust  vectoring  as  the  primary  control  concept. 
This  tailless  design  of  a  supersonic  fighter  using  pitch- and 
yaw-vectoring  vanes  for  control  was  flown  at  extreme  angles  of 
attack  during  free-flight  tests  in  the  Full-Scale  Tunnel. 

Free-flight  tests  in  the  Full-Scale  Tunnel  with  a  large 
number  of  fighter  configurations  demonstrated  that 
thrust  vectoring  in  pitch  and  yaw  nearly  eliminated  pre-
vious  constraints  on  flight  at  high  angles  of  attack. 
Control  effectiveness  in  pitch,  yaw,  and  roll  remained 
at  a  high  level  for  angles  of  attack  approaching  90 
degrees,  and  these  powerful  control  moments  were 
also  used  with  appropriate  flight  sensors  to  increase 
the  stability  of  aircraft  at  high  angles  of  attack.  To  eval-
uate  thrust  vectoring  in  flight  with  a  full-scale  F/A-18 
aircraft  with  low-cost  hardware  modifications,  NASA  
designed  thrust-vectoring  paddles  in  the  engine 
exhausts  of  the  twin-engine  aircraft.  After  extensive 
engineering  analysis  and  supporting  tests  in  other  facil-
ities,  free-flight  model  tests  were  conducted  to  evaluate 
the  potential  benefits  of  the  candidate  factoring  system. 

Thrust vectoring provided high levels of control at high angles 
of attack, at which conventional aerodynamic controls are 
degraded. In this free-flight test of 1983, pitch and yaw vanes 
provided control power, and an angle-of-attack vane provided 
feedback for stability augmentation to the extent that the vertical 
tails could be removed without effect for flight at extreme angles 
of attack. 

CHAPTER 5: FLIGHT AT HIGH ANGLES OF ATTACK 



100 MODELING FLIGHT  

During flights in the Full-Scale Tunnel, the F/A-18 free-flight model powered by compressed-air engine 
simulators and equipped with vectoring paddles could be precisely controlled at extreme angles of attack. 
The relative effectiveness of thrust vectoring was impressively demonstrated when the twin vertical tails 
were removed with no degradation in control at angles of attack greater than 30 degrees. Subsequently, the 
powerful effects of vectoring were demonstrated in flight with a modified F/A-18 full-scale aircraft known as 
the High-Alpha Research Vehicle (HARV).17  In addition to the F/A-18 application, the free-flight 
technique demonstrated that similar results 
could be obtained with models of the F-16 and 
X-29 aircraft. 

As  interest  in  thrust  vectoring  intensified  in  the  1980s,  other  Langley 
organizations  designed  supersonic  advanced  configurations  using  thrust 
vectoring  as  the  primary  control  concept.  This  tailless  design  of  a  super-
sonic  fighter  using  pitch- and  yaw-vectoring  vanes  for  control  was  flown  at 
extreme  angles  of  attack  during  free-flight  tests  in  the  Full-Scale  Tunnel. 

In  addition  to  showing  the  benefits  of  thrust 
vectoring  when  retrofitted  to  existing  aircraft 
configurations,  Langley  continued  its  exploratory 
assessments  of  applications  for  high-angle-of-
attack  conditions  with  several  NASA  generic-
research  models  configured  without  horizontal 
or  vertical  tails.  With  thrust  vectoring  in  pitch  and 
yaw,  flight  demonstrations  of  these  tailless  mod-
els  provided  impressive  statements  of  the 
unprecedented  level  of  controllability  provided 
by  thrust  vectoring.  Although  such  tailless  con-
figurations  would  require  auxiliary  backup  con-
trol  surfaces  for  emergency  engine-out  condi-
tions,  the  test  results  suggest  that  future  designs 
(including  stealthy  configurations  with  reduced 
radar  signatures)  could  employ  vectoring  con-
cepts  for  operations  at  extreme  angles  of  attack. 

The  free-flight  model  of  the  F-18  flies  at  high  angles  of  attack  with  thrust-
vectoring  vanes  and  deflectable  nose  strakes.  Both  concepts  were  sub-
jects  of  intense  flight-test  investigations  at  Dryden. 

Another valuable contribution of free-flight 
model flight tests to high-angle-of-attack tech-
nology was a demonstration of yaw control 
effectiveness using deflectable small strakes 
near the nose tip of the fuselage forebody. The 
actuated nose strakes for enhanced rolling 
(ANSER) system, which had been designed to 
control powerful vortex flows shed off the nose 
at high angles of attack, produced large yaw-
ing moments (orders of magnitude greater 
than conventional rudders) at extreme angles 
of attack.18  The strakes were also subse-
quently flown on the HARV aircraft at Dryden 
in convincing demonstrations of enhanced 
maneuverability. 
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Many other free-flight tests were 
conducted in the Langley Full-Scale 
Tunnel in investigations of high-angle-
of-attack characteristics of high-perfor-
mance aircraft. Free-flight tests were 
conducted to evaluate whether 
dynamic rolling  motions would cause 
significant effects during flights of a 
full-scale F-106B aircraft equipped 
with vortex flaps on the wing-leading 
edge. Satisfactory results from those 
tests reduced the risk of the flight-test 
program and helped its assessments. 
Another major program for Langley 
was its partnership in the development 
of the thrust-vectoring X-31 interna-
tional experimental aircraft, which 
demonstrated “super-maneuverability” 
capabilities at high angles of attack.19 i

NASA  activities  in  support  of  the  international  X-31  research  aircraft  program  
ncluded  free-flight  model  testing  in  the  Full-Scale  Tunnel. 

With the transfer of the Langley Full-Scale Tunnel in 1995 to Old Dominion University, NASA’s last high-angle-of-attack test program 
in the facility was a series of force tests for a free-flight model of the F/A-18E. 
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Free-flight  tests  of  the  F/A-18E  model  were  conducted  in  the  Langley  14- by  22-Foot  Tunnel. 

As  discussed,  NASA  ceased  its  management  of  the  Langley  Full-Scale  Tunnel  in  1995  and  turned  opera-
tions  of  the  facility  over  to  Old  Dominion  University.  The  last  military  high-angle-of-attack  activities  conducted 
by  NASA  in  the  facility  were  conventional  force  tests  of  a  free-flight  model  of  the  F/A-18E  configuration  in 
1996.  A  brief  series  of  free-flight  tests  was  conducted  in  the  Langley  14- by  22-Foot  Tunnel  under  that  program. 

Summary 

In summary, the role of free-flight wind tunnel model testing for high-performance military configurations 
became vital in providing superior and safe characteristics for high-angle-of-attack conditions. Develop-
ment programs  for nearly every fighter since the F-4 requested NASA  support to identify potential problems 
early in design and to prepare  military flight-test organizations for subsequent full-scale flight experiences. 
With the closure of the Langley Full-Scale Tunnel and the dramatic reduction in highly maneuverable air-
craft programs, the wind tunnel testing technique will face new challenges for future applications. 
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CHAPTER 6: 

SPINNING AND SPIN RECOVERY 

Background 

The most extensive use of dynamically scaled models by the NACA  and NASA  in aeronautical programs 
has been with spinning. Providing satisfactory spin and recovery characteristics has demanded the 

development and validation of satisfactory prediction techniques for this primary safety-of-flight concern. 
The complexity of the aerodynamic environment during dynamic spinning motions at poststall angles of 
attack continues to be challenging for theoretical techniques or methods other than dynamic model tests. 
After the design, development, and initial operations of free-spinning tunnels by the NACA, nearly 600 spin 
tunnel entries have been conducted at Langley to assess characteristics of military and civil aircraft. The 
scope of investigations typically includes assessments of the effects of a large number of variations in air-
craft center-of-gravity locations, mass distribution, initial control settings, and recovery techniques. In the 
case of military configurations with numerous combinations of external stores, test programs in the Spin 
Tunnel may last for months during exhaustive assessments of the effects of the foregoing variables.1 

Some of the major results noted from spin tunnel tests include the types of spins (spin modes) exhibited 
by a configuration, the most effective control combination for recovery, and assessments of the effective-
ness of auxiliary spin recovery devices such as parachutes or rockets. The spins exhibited by aircraft 
include a variety of motions involving steady, unsteady, or oscillatory rotary movement. The classic steady 
spin mode involves a smooth rotation of the aircraft at a relatively constant angle of attack about a vertical 
spin axis. If the angle of attack exhibited during the spin is slightly greater than the stall angle of attack, but 
less than about 45 degrees, the spin is referred to as a steep steady spin, and the spin axis is well forward 
of the nose of the airplane. On the other hand, if the angle of attack of the spin approaches 90 degrees, the 
fuselage will approach a horizontal attitude, and the spin is referred to as a steady flat spin about a spin axis 
near the center of gravity of the airplane. Oscillatory spins involve periodic fluctuations in aircraft pitch, roll, 
and yaw rates. Steep and moderate spins may be oscillatory; however, flat spins are usually steady. 
Unsteady poststall modes may also be encountered in which wildly fluctuating, nonperiodic motions occur. 
Some configurations may exhibit a poststall condition, in which the aircraft enters a deep stall trimmed con-
dition with no significant rotation. Finally, some unconventional aircraft may tumble end over end with no 
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Analysis  of  aerodynamic  phenomena  in  spinning  began  with  tests  in  the  Langley  5-Foot  Vertical  Tunnel  in  the  1920s.  A  
model  of  the  BT-9  airplane  is  undergoing  static  force  and  moment  measurements  to  obtain  data  for  theoretical  studies. 
The  flow  in  the  tunnel  was  downward,  and  free-spinning  tests  were  not  possible.  For  some  tests,  the  model  was  attached 
to  a  rotating  spin  balance,  which  simulated  spinning  motions.  The  main  purpose  of  the  vertical  orientation  of  the  tunnel 
was  to  simplify  the  balance  of  rotating  masses  for  dynamic  tests. 

means to recover. This section of the document will discuss spins, and later sections will address the use 
of dynamic models to study poststall motions such as tumbling and deep stalls. 

Qualitatively, recovery from the various spin modes is dependent on the type of spins exhibited, the mass 
distribution of the aircraft, and the sequence of controls applied. Recovering from the steep steady spin 
tends to be easy, because the orientation of the aircraft control surfaces to the free stream enables at least 
a portion of the control effectiveness to be retained. In contrast, during a flat spin, the control surfaces are 
oriented so as to provide little recovery moment, especially  a rudder on a conventional vertical tail. In addi-
tion to the ineffectiveness of controls for recovery from the flat spin, the rotation of the aircraft about a near-
vertical axis near its center of gravity results in high centrifugal forces at the cockpit for configurations with 
long fuselages. In many cases, the negative (“eyeballs out”) g-loads will be so high as to incapacitate the 
crewmembers and prevent them from escaping from the aircraft. 
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As a result of the accumulation of extensive experience in spin tunnel testing and the correlation of results 
with full-scale results, Langley researchers have evolved  a methodical approach in the use of dynamic 
models for investigations of spin and recovery characteristics. As will be discussed, this experience base 
also involves lessons learned regarding potential Reynolds number effects and the necessary modifications 
to testing techniques to minimize such phenomena. 

Military Configurations 

After the operational readiness of the Langley 15-Foot Spin Tunnel in 1935, initial testing centered on 
establishing correlation with full-scale flight-test results of spinning behavior for the XN2Y-1 and F4B-2 
biplanes.2  Critical comparisons of earlier results obtained on small-scale models from the Langley 5-Foot 
Vertical Tunnel  and full-scale flight tests indicated considerable scale effects on aerodynamic characteris-
tics; therefore, calibration tests in the new tunnel were deemed imperative. The results of the tests for the 
two biplane models were encouraging in terms of the nature of recovery characteristics and served to 
inspire confidence in the testing technique and promote future tests. During those prewar years, the NACA  
staff was afforded time to conduct fundamental research studies and to make general conclusions for 
emerging monoplane designs. Systematic series of investigations were conducted in which, for example, 
models were tested for combinations of eight different wings and three different tails.3  Other investigations 
of tunnel-to-flight correlations occurred, including comparison of results for the BT-9 monoplane trainer. 

As experience with spin tunnel testing increased, researchers began to observe more troublesome differ-
ences between results obtained in flight and in the tunnel. The effects of Reynolds number, model accura-
cies, control-surface rigging of full-scale aircraft, propeller slipstream effects not present during unpowered 
model tests, and other factors became appreciated to the point that a general philosophy began to emerge 
for which model tests were viewed as good predictors of full-scale characteristics, but examples of poor 
correlation required even more correlation studies and a conservative interpretation of model results. Critics 
of small-scale model testing did not accept a growing philosophy that spin predictions were an “art” based 
on extensive testing to determine the relative sensitivity of results to configuration variables, model dam-
age, and testing technique. Nonetheless, pressure mounted to arrive at design guidelines for satisfactory 
spin recovery characteristics. An empirical criterion based on the projected side area and mass distribution 
of the airplane was derived in England, and the Langley staff proposed a design criterion in 1939 based 
solely on the geometry of aircraft tail surfaces. Known as the tail-damping power factor (TDPF), it was 
touted as a rapid estimation method for determining whether a new design was likely to comply with the 
minimum requirements for safety in spinning.4 

The beginning of World War II and the introduction of a Langley 20-Foot Spin Tunnel in 1941 resulted in 
a tremendous demand for spinning tests of high-priority military aircraft. The workload of the staff increased 
dramatically, and a tremendous amount of data was gathered for a large number of configurations. Military 
requests for spin tunnel tests filled all available tunnel test times, leaving no time for general research. At 
the same time, configurations were tested with radical differences in geometry and mass distribution. 

Tailless aircraft with their masses distributed in a primarily spanwise direction were introduced, along with 
twin-engine bombers and other unconventional designs with moderately swept wings and canards. 

CHAPTER 6: SPINNING AND SPIN RECOVERY 



106 MODELING FLIGHT  

After the breathtaking demands of the war were met, the NACA  staff turned its interests back toward 
improving the state of the art for spin tunnel testing and developing spin recovery design criteria. Once 
again, the results of spin tunnel model tests were examined to arrive at design guidelines for future aircraft.5  
The earlier TDPF criterion was reexamined in light of additional spin tunnel results gathered during the war 
and found to be deficient based on the more recent results. In addition, large effects of the relative mass 
distribution along the wings and fuselage observed in more recent tests had not been incorporated. In view 
of these shortcomings, an effort was undertaken to develop a revised empirical criterion based on results 
of tests of about 100 airplane designs in the 15-foot and 20-foot spin tunnels. 

The procedure for updating the TDPF criterion involved plotting a parameter based on the geometry of 
the tail as a function of the mass distribution for three values of the density of the aircraft relative to the 
atmosphere. Results obtained in tunnel tests were then located on the plot, and boundaries were drawn to 
separate regions where spin 
recoveries were satisfactory and 
those where recoveries were 
unsatisfactory. The configurations 
used for the analysis included 
biplanes, monoplanes, land-
planes and seaplanes, and sin-
gle- and twin-engine designs.  The 
resulting criterion was intended to 
be a qualitative  guide in the pre-
liminary design of aircraft at the 
time by offering a reasonable 
probability of satisfactory recov-
ery by reversal of rudder and ele-
vator. In lieu of further research, 
industry used this criterion from 
the late 1940s  for design. As will 
be discussed, the criterion was 
revisited during a NASA  spin 
research program for general-avi-
ation aircraft in the 1970s. 

Geometric  properties  of  the  tail  surfaces  of  aircraft  were  major  factors  in  the 
derivation  of  the  NACA–developed,  tail-damping  power  factor  parameter.  The 
aircraft  on  the  left  has  a  better  tail  design  for  spinning  because  the  rudder  is  not 
shielded  by  the  wake  of  the  horizontal  tail  and  side  area  is  available  beneath  the 
horizontal  for  spin  damping. 

During the hectic years of World War II, the technical output of spin tunnel testing was necessarily focused 
on experimental results obtained with the free-spinning models. It was realized, of course, that advances in 
the state of the art for spin predictions would require a more complete understanding of aerodynamic phe-
nomena experienced during spins. As discussed, aerodynamic measurements for rotating wings and air-
craft configurations had been  made in the 5-Foot Vertical Tunnel. However, the advent of the Langley 
15-foot and 20-foot spin tunnels discontinued that capability in favor of visual observations of the free-
spinning models with six degrees of freedom. Immediately after the war, the Langley staff was able to 
respond to the need for a better understanding of aerodynamic data with the design and operational intro-
duction of a new “rotary  balance”  in  the  20-Foot  Spin  Tunnel.6  However,  the  relatively  small  free-spinning 
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models  were  not  directly  adaptable  for  testing  with 
the  rotary  balance,  requiring  the  construction  of  a 
new,  larger  model  for  aerodynamic  force  and 
moment  measurements.  The  use  of  this  test  appa-
ratus  in  conjunction  with  free-spinning  tests  signifi-
cantly  improved  the  understanding  of  aerodynamic 
interactions  during  spins. 

In the 1950s, advances in aircraft performance 
provided by the introduction of jet propulsion 
resulted in radical changes in aircraft configura-
tions, creating challenges for spin technology. Mili-
tary fighters no longer resembled the aircraft of 
World War II, as the introduction of swept wings 
and long, pointed fuselages became common. 
Suddenly, certain factors such as mass distribution 
became more important, and airflow around the 
unconventional, long fuselage  shapes during spins 
dominated the spin behavior of some configura-
tions. At the same time, fighter aircraft became 
larger and heavier, resulting in much higher 
masses relative to the atmospheric density, espe-
cially at high altitudes. Once again, the industry 
and military services turned to the 20-Foot Spin 
Tunnel at Langley for guidance in the design and 
testing of these aircraft. As it proceeded to honor 
requests for spin tunnel testing, the Langley staff 
realized that most of the technology from the World 
War II era would no longer apply and that a new 
experience base would be needed. 

A  general-aviation  model  is  mounted  on  a  rotary-balance 
test  apparatus  in  the  spin  tunnel  for  measurements  of  aero-
dynamic  forces  and  moments  during  simulated  spins.  An 
electrical  strain-gauge  balance  is  contained  within  the  model, 
and  the  model’s  attitude  relative  to  the  vertically  rising  air-
stream  is  controlled  remotely. 

Free-spinning model tests of these aircraft shapes quickly identified new phenomena that would shape 
spin and recovery analysis for years. Slender swept wing models exhibited the normal steep or flat spin 
modes shown by earlier configurations, but they also displayed oscillatory spin modes that were expected 
to be disorienting to pilots. The oscillatory spins would also require new recovery techniques. Because of 
the distribution  of mass along  the fuselage, the axis of least inertial resistance had become the roll axis, and 
the use of ailerons became a powerful mechanism for spin recovery.7  Spin tunnel tests of models of the Bell 
X-5 variable-sweep research aircraft (at aft sweep) and the slender, pointed-nose Douglas X-3 Stiletto were 
among the first to document the new behavior. 

During the late 1930s, British researchers had noted considerable effects of Reynolds number on the 
aerodynamic behavior of certain fuselage cross-sectional shapes during spins. In particular, the aft- 
fuselage components of aircraft configurations having square or rectangular aft-fuselage, cross-sectional 
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Radical  new  aircraft  configurations  of  the  1950s  had  significant  impacts  on  the  state  of  the  art  in  spinning  by  introducing 
tailless  designs  and  extreme  variations  in  mass  distribution  along  the  fuselage.  The  slender  X-3  research  aircraft,  center, 
and  the  X-5  variable-sweep  design,  upper  right,  were  the  first  to  demonstrate  the  effectiveness  of  roll  control  for  spin 
recovery  during  tests  of  free-spinning  models  at  Langley. 

shapes with certain types of rounded corners were discovered to produce pro-spin yawing moments at low 
Reynolds number representative of spin tunnel tests but anti-spin moments for full-scale values of  
Reynolds number.8  As expected, such characteristics had huge effects on the quality of correlation between 
model predictions and full-scale tests. 

In the mid-1950s, the NACA  encountered similar effects of cross-sectional shape, but in this case, the 
phenomenon involved the long fuselage forebodies being introduced at the time. This experience led to one 
of the more important lessons learned in the use of free-spinning models for spin predictions. One project 
stands out as a key experience regarding this topic. As part of the ongoing military requests for NACA  sup-
port of aircraft development programs, the Navy asked Langley to conduct spin tunnel tests of a model of 
its new Chance  Vought XF8U-1 Crusader fighter in 1955. The results of spin tunnel tests of a 1/25-scale 
model indicated that the airplane would exhibit 2 spin modes.9  The first mode would be a potentially 
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Spin  tunnel  tests  of  the  Chance  Vought  F8U  fighter  resulted  in  one  of  the  more  important  lessons  learned  in  dynamic 
free-flight  model  testing.  Unrealistic  pro-spin  moments  produced  by  the  aerodynamic  behavior  of  the  cross-sectional 
shape  of  the  forward  fuselage  resulted  from  the  low  Reynolds  number  of  the  free-spinning  test.  Subsequently,  configura-
tions  were  checked  for  possible  sensitivity  to  such  effects  before  tests  and  artificial  devices  used  to  minimize  the  effect. 

dangerous fast flat spin at an angle of attack of approximately 87 degrees, from which recoveries were 
unsatisfactory or unobtainable. The second spin was much steeper with a lower rate of rotation, and recov-
eries would probably be satisfactory. 

As the spin tunnel results were analyzed, Chance Vought engineers directed their focus to identifying 
factors that were responsible for the flat spin exhibited by the model. The scope of activities stimulated by 
the XF8U-1 experience included, in addition to extended spin tunnel tests, one-degree-of-freedom auto-
rotation tests of a model of the XF8U-1 configuration in the Chance Vought Low Speed Tunnel and a NACA  
wind tunnel research program  that measured the aerodynamic sensitivity of a range of two-dimensional, 
noncircular cylinders to Reynolds number.10  The wind tunnel tests were designed and conducted to include 
variations in Reynolds number from the low values associated with spin tunnel testing to higher values 
more representative of flight. 

With results from the wind tunnel studies in hand, researchers were able to identify an adverse effect of 
Reynolds number on the forward fuselage shape of the XF8U-1 such that at the relatively low values of 
Reynolds number for the spin tunnel tests (about 90,000, based on fuselage forebody depth), the spin 
model exhibited a powerful pro-spin yawing moment dominated by the forebody. The pro-spin moment 
caused an autorotative spinning tendency resulting in the fast flat spin observed in the spin tunnel tests. As 
Reynolds number in the conventional tunnel tests was increased to values approaching 300,000, however, 
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the moments produced by the forward fuselage became anti-spin and remained so for higher values of 
Reynolds number. The researchers had identified the importance of cross-sectional shapes of modern air-
craft—particularly those with long forebodies—on spin characteristics and the possibility of erroneous spin 
tunnel predictions. When the full-scale spin tests were conducted, the XF8U-1 airplane exhibited only the 
steeper spin mode, and the fast flat spin predicted by the spin model was not encountered. 

The  mechanism  of  the  Reynolds  num-
ber  effect  experienced  in  the  XF8U-1 
project  is  depicted  in  the  accompanying 
sketch,  which  shows  a  top  view  of  an  air-
plane  descending  in  a  vertical  spin  to  the 
right  at  a  high  angle  of  attack,  represent-
ing  a  flat  spin.  The  arrows  along  the 
nose  indicate  the  relative  magnitude  and 
direction  of  the  sideward  velocities 
induced  along  the  fuselage  because  of 
the  spinning  rotation.  The  sketch  on  the 
right  is  a  head-on  view  that  illustrates  the 
local  sideslip  angle  created  at  a  repre-
sentative  nose  location  (section  A-A) 
because  of  the  spin  rotation.  The  air-
plane’s  near-vertical  rate  of  descent  and 
the  sideward  velocity  at  the  nose  com-
bine  to  produce  a  positive  sideslip  angle 
at  the  nose.  If,  for  the  right-spin  condi-
tion,  nose-right  aerodynamic  yawing 
moments  are  produced  by  the  local  side-
slip  angle,  the  resulting  moment  will  tend 
to  increase  the  spin  rate.  If,  on  the  other 
hand,  nose-left  moments  are  produced, 
the  aerodynamic  moment  will  tend  to 
resist  the  spin. 

The type of moment produced by certain nose shapes can be sensitive to Reynolds number. For exam-
ple, the accompanying sketch shows the variation of yawing moment produced by a square cross-sectional 
shape with rounded corners subjected to variations in Reynolds number at an angle of sideslip of 5 degrees 
at an angle of attack of 80 degrees, representative of a flat spin. 

Two regions of Reynolds number are of interest: low values, typical of tests in the Spin Tunnel, and high 
values, representative of full-scale conditions. The values of yawing moment are pro-spin for the model test 
condition but become anti-spin for the full-scale flight condition at high Reynolds number. This trend in 
aerodynamic behavior is caused by movement of the flow separation areas on the fuselage cross section 
with variations in Reynolds number. 

Local  flow  angularity  at  a  representative  fuselage  forebody  location 
caused  by  the  spin  rate  and  the  vertical  velocity  of  airplane.  Shown  in  top 
and  front  views  during  a  right  spin,  the  section  A-A  experiences  a  local 
sideslip  to  the  right. 
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During decades of experience 
in correlating model and full-scale 
airplane flight results after the 
XF8U-1 project, Langley’s spin 
tunnel personnel developed 
expertise in the anticipation  of 
potential Reynolds number 
effects, such as the forebody 
effect, and in the art of developing 
methods to geometrically modify 
models to minimize undesirable 
effects from the phenomenon. In 
this approach, cross-sectional 
shapes of aircraft are examined 
before models  are constructed, 
and if the design is similar to 
those known to exhibit scale 
effects, static wind tunnel tests 
are conducted for a range  of 
Reynolds number to determine if 
artificial devices such as nose-
mounted strakes can be used to 
alter the flow separation on the 
nose at low Reynolds number and more accurately simulate full-scale conditions.11 As shown by the data 
point at model values of Reynolds number in the sketch, the addition of a small fuselage strake to some 
shapes can produce model aerodynamics comparable to those of the airplane. When strakes are applied 
to spin tunnel models to correct for scale effects, they are only used for the range of angles of attack where 
they are meant to be effective, and the model is hand-launched into the tunnel at those angles of attack. 

Adverse  effect  of  Reynolds  number  on  the  forebody  of  a  fighter  model  as  mea-
sured  in  wind  tunnel  tests.  At  relatively  low  values  of  Reynolds  number,  the  
model  displays  propelling  yawing  moments  caused  by  flow  separation  phenom-
ena  at  that  condition,  whereas  at  full-scale  Reynolds  numbers,  the  moment  is 
anti-spin  because  of  changes  in  flow  separation.  Also  shown  is  the  favorable 
effect  of  adding  nose  strakes. 

Interestingly, after testing had been completed and lessons  had been learned for the XF8U-1, a derivative 
of the aircraft known as the F8U-1P  designed for reconnaissance missions required testing in the Langley 
Spin Tunnel. This version of the airplane included a modification to the lower fuselage forebody cross sec-
tion to accommodate a camera installation. The forebody modification resulted in a cross-sectional shape 
with less rounded corners for the forward fuselage. Based on the earlier XF8U-1 experiences, precursor 
static wind tunnel tests of the new configuration were conducted in the Langley 300-mph 7- by 10-Foot  
Tunnel to assess the impact of Reynolds number variations  for the new configuration. The results indicated 
that the cross-sectional shape  of the F8U-1P  would produce a propelling pro-spin yawing moment at angles 
of attack of 70 degrees or greater for both the spin tunnel model and the full-scale airplane. In this case, the 
fast flat spin expected in the tunnel tests was verified, and the flight program could approach spin tests with 
confidence that the flat spin would be encountered.12 

In addition to the XF8U-1, it was necessary to apply scale-correction fuselage strakes to the spin tunnel 
models of the Northrop F-5A  and F-5E fighters, the Northrop YF-17 lightweight fighter prototype, and the 
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Fairchild A-10 attack aircraft to avoid erroneous predictions because of fuselage forebody effects. In the 
case of the X-29, a specific study of the effects of forebody devices for correcting low Reynolds number 
effects was conducted in detail.13 

The introduction of fuselage shapes with long pointed noses also resulted in another unexpected phe-
nomenon that greatly influenced spin and recovery characteristics. It was noted that spin tunnel models 
with pointed noses exhibited spin and recovery characteristics that were sensitive to the physical condition 
of the nose tip. Sometimes, seemingly unimportant dents or deformation of the extreme nose tip greatly 
affected free-spinning results. Some models spun readily in one direction and not at all in the other, whereas 
later in the test program, the direction in which the model would spin reversed, a trend that continued 
through the tunnel test program as a model suffered wear and tear during testing. To provide insight to the 
mechanisms involved, the NACA  and NASA  conducted conventional wind tunnel force and moment testing, 
which defined the critical factor to be large asymmetric yawing moments produced on the forebody as a 
result of slight imperfections near the nose tip.14  The magnitude of the asymmetric moment could be large, 
reaching values many times larger than those provided by corrective controls. 

The powerful effects of asymmetric moments were observed in free-spinning model and full-scale flight 
tests for the X-3 research airplane, F-104 fighter, and F-111 fighter-bomber.15  Inspired by the results being 
obtained in the Spin Tunnel, researchers at the Ames Research Center conducted informative aerodynamic 
testing of generic pointed nose shapes over a range of Mach number and Reynolds number in the Ames 
12-Foot Pressure Tunnel to provide basic design information.16 

As experience with nose-induced asymmetric yawing moments was accumulated, researchers explored 
the use of flow-control devices to enable spin recovery or even prevent spins. The progress of the work 
began with free-spinning studies using several models to demonstrate that rotating a small section of the 
nose tip could control the direction of the spin. Next, the researchers conducted free-spin, force, and 
moment testing to provide guidelines for the use of auxiliary devices such as long thin strakes along the 
forebody or foldout canards for spin recovery. Model spin tests were even conducted to demonstrate that 
actively rotating a pointed nose during the spin could result in spin recovery.17  The expertise and experi-
ences accumulated by the research staff of the Spin Tunnel regarding the impact of long pointed fuselage 
shapes ultimately provided major inputs for several full-scale aircraft development programs, including the 
F-104, F-111, X-29, and X-31 programs. 

External stores have been found to have large effects on spin and recovery, especially for asymmetric 
loadings, in which stores are located asymmetrically along  the wing, resulting in a lateral displacement of 
the center of gravity of the configuration. For example, some aircraft may not spin in the direction of the 
“heavy” wing but will spin fast and flat into the “light” wing. In most cases, model tests in which the shapes 
of the external stores were replaced with equivalent weight ballast indicated that the effects of asymmetric 
loadings were primarily due to a mass effect, with little or no aerodynamic effect detected. However, large 
stores such as fuel tanks were found, on occasion, to have unexpected effects because of aerodynamic 
characteristics of the component. During the aircraft development, spin characteristics of high-performance 
military aircraft must be assessed for all loadings proposed, including symmetric and asymmetric configura-
tions. Spin tunnel tests can therefore be extensive for some aircraft, especially those with variable-sweep 
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Free-spinning  tests  are  used  to  determine  the  effects  of  external  stores  on  the  spin  and  recovery  characteristics  of  military 
aircraft.  The  photograph  shows  a  model  of  the  F/A-18F  during  store  effects  testing  after  the  deployment  of  the  emergency 
spin  recovery  parachute. 

wing capabilities. Testing of the General Dynamics F-111, for example, required months of test time to 
determine spin and recovery characteristics for all potential conditions of wing-sweep angles, center-of-
gravity positions, and symmetric and asymmetric store loadings. 

The effects of other configuration and flight variables are also considered in planning free-spinning model 
tests. For example, the direct and indirect effects of propulsive power on spin and recovery characteristics 
have been addressed. Although the policy for recovery from spins in propeller-driven airplanes called for 
retarding the throttle as soon as possible during the spin because of possible adverse effects, in some 
cases, the pilots recovered from otherwise uncontrollable spins by applying full power. Such results may 
have been due to increased effectiveness of the rudder and elevator surfaces in the propeller slipstream. 
With the advent of jet engines, however, direct impingement of jet exhaust on control surfaces was unlikely. 
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However, new concern arose over possible effects of gyroscopic moments produced by the rotating parts 
of jet engines. 

To assess the potential impacts of gyroscopic effects on spins and recovery, Langley conducted  
free-spinning model tests in which rotating flywheels powered by model airplane engines were used to 
simulate the expected gyroscopic behavior.18  Results of exploratory tests for a representative straight 
wing attack airplane model with a flywheel designed to simulate a range of gyroscopic moments showed 
effects on spin and recovery with different results depended on spin direction. In particular, the rotating 
flywheel changed spin recovery from satisfactory to unsatisfactory for right spins, but for left spins, the sat-
isfactory recovery characteristics for the basic airplane were not altered. One of Langley’s experiences with 
large, engine-generated gyroscopic effects occurred during spin tunnel evaluations of the Ryan X-13 tail-
sitter VTOL, which consisted of a small airframe and a large turbojet engine. Today’s jet fighters do not, in 
general, exhibit large gyroscopic effects in spins, and the simulation of engine rotating parts is usually not 
included in the test program. 

In addition to providing predictions of spin and recovery characteristics for the Nation’s military aircraft, 
free-spinning models are used to develop key technologies required for emergency spin recovery devices 
such as parachutes, rockets, and extensible surfaces such as canards and strakes. Such devices are typi-
cally carried by development  aircraft specifically targeted for high angle of attack and spin demonstration 
tests. In the Spin Tunnel, miniature versions of the devices are deployed during spins to evaluate their 
effectiveness in terminating the spin motion. 

The use of tail-mounted parachutes for emergency spin recovery has been common from the earliest 
days of flight to the present day. Properly designed and deployed parachutes have proven relatively reliable 
spin recovery devices, always  providing an anti-spin moment, regardless of the orientation of the aircraft or 
the disorientation or confusion of the pilot. Almost every military aircraft spin program conducted in the Spin 
Tunnel includes a parachute  investigation. Free-spinning model tests are used to determine the critical 
geometric variables for parachute systems. Paramount among these variables is the minimum size of para-
chute required  for recovery from the most dangerous spin modes. As would be expected, the size of the 
parachute is constrained by issues regarding system weight and the opening shock loads transmitted to the 
rear of the aircraft. In addition  to parachute size, the length of parachute riser (attachment) lines and the 
attachment point location on the rear of the aircraft are also critical design parameters. 

The importance of parachute riser line length can be critical to the inflation and effectiveness of the para-
chute for spin recovery. Results of free-spin tests of hundreds of models in the Spin Tunnel have shown that 
if the riser length is too short, the parachute will be immersed in the low-energy wake of the spinning air-
plane and will not inflate. On the other hand, if the towline length is too long, the parachute will inflate but 
will drift inward and align itself with the axis of rotation, thereby providing no anti-spin contribution. The 
design and operational implementation of emergency spin recovery parachutes is a stringent process that 
begins with spin tunnel tests and proceeds through the design and qualification of the parachute system, 
including the deployment and release mechanisms. By participation in each of these segments of the pro-
cess, Langley researchers have amassed tremendous knowledge regarding parachute systems and are 
called upon frequently by the aviation community.19 
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Other  auxiliary  spin  recovery  devices 
have  been  explored  using  dynamically 
scaled  models.  Spin  tunnel  studies  have 
been  conducted  on  the  use  of  spin  recovery 
rockets  mounted  at  the  wingtips  of  model 
aircraft,  including  the  XF8U-1,  T-28,  A-5A, 
and  OV-10.20  Deviation  from  traditional 
parachute  installations  is  seriously  consid-
ered  for  some  configurations  in  which  the 
carriage  and  deployment  of  a  parachute 
would  be  difficult.  For  example,  the  North 
American  OV-10  twin-boom  configuration 
incorporated  a  unique  tail  design  not  suit-
able  for  emergency  parachute  systems.21  
The  results  of  the  rocket  tests  for  the  various 
aircraft  models  defined  the  impulse  (magni-
tude  and  duration)  of  the  rocket  thrust 
required  for  satisfactory  recovery  and  the 
relative  thrust  angle  required.  Analytical 
studies  of  the  effectiveness  of  rockets  for 
spin  recovery  have  also  been  made.22 

Critical  geometrical  properties  of  an  emergency  spin  parachute  sys-
tem  include  the  parachute  type  and  diameter,  the  riser  line  lengths, 
and  the  attachment  point.  The  sketches  illustrate  satisfactory  and  
unsatisfactory  installations. 

Other studies have included the evalua-
tion of foldout canard surfaces for spin 
recovery. The most well-known application 
of this concept was for the F-14 high-
angle-of-attack/spin test airplane. Spin 
tunnel testing of the F-14 configuration 
indicated the possibility of a fast flat  
spin with no recovery—even using a com-
bination of conventional aerodynamic  
controls and a reasonably sized para-
chute. Free-spinning model tests demon-
strated that satisfactory recoveries from 
the flat spin could be achieved if the maxi-
mum allowable  parachute was combined 
with deployable small canard surfaces 
mounted on the fuselage forebody. A   
full-scale F-14 test airplane was config-
ured with the parachute and canards for 
joint NASA–Grumman–Navy  high-angle-
of-attack flight-testing at the Dryden Flight 
Research Center.23 

The  F-14  used  in  the  NASA–Grumman–Navy  high-angle-of-attack 
program  at  NASA  Dryden  was  equipped  with  an  emergency  spin  
recovery  parachute  system  and  foldout  canards  on  the  forward  
fuselage. 
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General-Aviation Configurations 

The dramatic changes in aircraft configurations after World War II required almost complete  
commitment of the Spin Tunnel to development programs for the military, resulting in stagnation of  
research for light personal-owner-type aircraft. In subsequent years, designers had to rely on the  
database and design guidelines that had been developed based on experiences during the war. Unfortu-
nately, stall/spin accidents in the early 1970s in the general-aviation community increased at an alarming 
rate, with over 28 percent of fatal accidents attributed to stall/spin. Even more troublesome, on several 
occasions, aircraft that had been designed according to the tail-damping power factor criterion had exhib-
ited unsatisfactory recovery characteristics, and the introduction of features such as advanced general-
aviation airfoils resulted in concern over the adequacy and state of the database for the general-aviation 
community. 

Finally, in the early 1970s, the pressure of new military aircraft development programs eased, permitting 
NASA  to embark on studies related to general-aviation aircraft. The scope of research focused on the use 
of radio-control and spin tunnel models to assess the impact of design features on spin and recovery char-
acteristics, and to develop testing techniques that could be used by the industry. The program was carefully 
planned and included the acquisition of full-scale aircraft that were modified for spin tests to produce data 
for correlation with model results.24 

One of the key objectives of the program was to evaluate the impact of tail design on spin characteristics 
with alternate tail configurations specifically designed to produce variability in the TDPF parameter. Models 
were constructed with four tails used in individual test programs, and results were compared with predic-
tions based on the tail design  criteria. The range of tails tested included conventional cruciform configura-
tions and low horizontal tail locations and a T-tail configuration. 

Model tests of low wing and high wing general-aviation configurations were undertaken in the Spin Tunnel 
to evaluate the tail design criterion for more modern airplanes and the effects of other geometric features. 
Results of the testing indicated that tail configuration had a large influence on spin and recovery character-
istics, but many other geometric features also influenced the characteristics, including fuselage cross- 
sectional shape. In addition, seemingly small configuration  features, such as wing fillets at the wing trailing-
edge juncture with the fuselage, had large effects. The existing TDPF criterion for light airplanes did not 
correctly predict the spin recovery characteristics of models for some conditions, especially when ailerons 
were deflected. NASA’s report to the industry stressed that, based on these results, TDPF should not be 
used to predict spin recovery characteristics. However, the criterion did provide a recommended approach 
to design of the airplane’s tail for enhanced spin recovery behavior.25 

The general-aviation spin research program included extensive correlations of spin tunnel tests with full-
scale spin tests for research aircraft.26  For a low wing research configuration that served as the workhorse 
of the program, the correlation of results indicated that the spin tunnel model exhibited all the spin modes 
that were obtained with the aircraft. Although a moderately steep spin mode was accurately predicted, a 
fast flat spin predicted by the model was at a lower angle of attack (difference of about 10 degrees) and spin 
rate than those experienced in flight for the airplane. 
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As part of its research program, NASA  continued to provide information on the design of emergency spin 
recovery parachute systems.27  Parachute diameters and riser line lengths were sized based on free-
spinning model results for high and low wing configurations and a variety of tail configurations. Additionally, 
guidelines for the design and implementation of the mechanical systems required for parachute deployment 
(such as mechanical jaws and pyrotechnic deployment) and release were documented. 

During its general-aviation stall/spin program, NASA  also encouraged industry to use its spin tunnel facil-
ity on a fee-paying basis. Several industry teams proceeded to use the opportunity to conduct proprietary 
tests for configurations in the tunnel. For example, the Beech Aircraft Corporation sponsored the first fee-
paid test in the Langley Spin Tunnel for free-spinning model tests of its Model 77 “Skipper” trainer.28  In such 
proprietary tests, the industry provided personnel for joint participation in the testing experience. 

Skewed Wing Configuration 

One of the more unusual aircraft config-
urations tested in the Spin Tunnel was the 
skewed wing concept pursued  for potential 
drag reduction at supersonic speeds. Sup-
porting tests of the NASA  AD-1 skewed 
wing research aircraft at Langley consisted 
of spin tunnel studies of the spin and spin 
recovery characteristics of a dynamically 
scaled model of the airplane.29  As these 
tests were initiated, researchers pondered 
over whether the characteristics of the 
asymmetric swept wing AD-1 configuration 
would be unusual. Results of the spin tun-
nel tests indeed showed unusual behavior 
in that the AD-1 model would not spin in 
the direction of the sweptback wing panel. 
For example, no spin could be obtained to 
the left if the right wing panel were swept 
forward, whereas spins were readily 
obtained in the other direction. 

Spin  tunnel  tests  of  a  model  of  the  NASA  AD-1  skewed  wing  research 
aircraft  showed  unusual  results.  The  model  would  not  spin  in  the  
direction  of  the  sweptback  wing  panel.  As  shown  here  from  a  ground 
view,  the  airplane  would  not  have  spun  to  the  left. 

Summary 

In summary, the application of dynamically scaled models to spinning by the NACA  and NASA  has pro-
vided the military and civil aviation communities with a national asset and a valuable tool to provide guid-
ance and understanding in a critical safety-of-flight area. Data obtained in the model tests have influenced 
recommended recovery procedures to be used by pilots during developmental spin tests and operational 
aircraft. With well over 600 configurations tested in the spin tunnel facility, model tests have become a rou-
tine segment of aircraft development programs. 

CHAPTER 6: SPINNING AND SPIN RECOVERY 



THIS PAGE INTENTIONALLY BLANK 



CHAPTER 7: 

119      

SPIN ENTRY AND POSTSTALL MOTIONS 

Spin Entry 

W ind tunnel free-flight tests such as those conducted in the Langley Full-Scale Tunnel are used specifi-
cally to provide  information on flight characteristics of aircraft configurations for angles of attack up to 

and including the stall/departure. If the model becomes unstable and departs from controlled flight at high 
angles of attack, the test is terminated by quickly withdrawing the model from the test section with a safety 
cable, and the severity of the departure and the effectiveness of recovery controls for the out-of-control 
condition cannot be evaluated. At the other end of the stall/spin spectrum, spin tunnel testing begins with 
the model essentially in the fully developed spin condition. In spin tunnel testing, the free-spinning model is 
hand-launched with prerotation into a spin without regard for whether the aircraft can reach the angles of 
attack and rotation rates from conventional flight. 

Experience has shown, however, that many aircraft may exhibit potentially dangerous flat spins in spin 
tunnel tests, but some of the configurations cannot be flown into the flat spin from conventional flight 
because of control limitations, aerodynamic factors, or inertial properties. In addition, some aircraft enter a 
developed spin quickly after a departure from controlled flight, while others must be forced into the spin with 
prolonged or unrealistic control inputs. It is difficult, therefore, to determine the spin susceptibility of a  
specific design based only on the tunnel test techniques. In view of this significant void of information, the 
NACA  and NASA  developed two additional outdoor free-flight model test techniques to evaluate spin entry 
and poststall motions. 

The helicopter  drop-model technique has been used since the early 1950s to evaluate the spin entry 
behavior of large unpowered models of military aircraft. The objective of these tests has been to evaluate 
the relative spin resistance of military configurations after various combinations of control inputs and the 
effects of timing of recovery control inputs after departures. Another testing technique to evaluate spin resis-
tance and out-of-control recovery procedures consists of spin entry evaluations of remotely controlled pow-
ered models that take off from prepared runways and fly to the test condition. NASA  conducted studies in 
its research program for general-aviation aircraft using this technique with propeller-driven general-aviation 
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configurations. The objectives of the tests included correlation with spin tunnel and full-scale results, evalu-
ations of the effects of configuration modifications to enhance spin resistance, development of testing tech-
nique procedures, and relatively low-cost instrumentation that could be used by industry design teams 
within the general-aviation community. The latest powered-model testing technique used by NASA  involves 
sophisticated powered models of jet-transport-type configurations for studies of control strategies for recov-
ery of transports after large attitude upset conditions. 

Historically, the first use of free-flight models by the NACA  and NASA  for studies of the incipient spin 
consisted of hand-launched models that were released with pro-spin controls at an elevated location in a 
large airship hangar at Langley in the 1920s. Along with British researchers, the NACA  experts recognized 
that the technique was tedious and time-consuming, to the point that testing this approach was abandoned 
during World War II. After the war, however, the sudden influx of inexperienced private pilots resulted in a 
dramatic increase in fatal stall/spin accidents that were characterized by inadvertent spin entry at low  
altitudes and ground impact before the developed spin could occur. At Langley, a lull in spin testing  
demands by the military allowed for a reexamination of spin entry testing techniques, and a testing  
technique was developed based on catapult launches of models in a large building that had previously 
housed the 15-Foot Spin Tunnel.1 

The first use of the NACA  catapult technique included an assessment of the testing efficiency and repeat-
ability of incipient spin motions of a representative personal-owner airplane. The tests were performed 
inside a building about 70-feet square and 60-feet high, with the catapult launching apparatus 55 feet above 
a recovery net. An elastic cord was used to catapult the model along a short track at a prescribed high angle 
of attack for launch, with the elevator control set to pitch the model from the launching angle of attack up to 
the stall, and the rudder was set to initiate a yawing motion. Data obtained from the tests were based on 
motion-picture records. The results of this initial study showed that the unpowered model motions were 
generally repeatable and symmetrical to the right and to the left. However, two major concerns surfaced 
after the assessment. The first concern was regarding the inefficiency and brief duration of the tests, and 
the second concern was over the potential existence of scale effects for the small model (wingspan of about 
33 inches) used in the investigation. This early experience did not inspire follow-on activities, and the  
development of more feasible testing techniques for studies of the incipient spin had to await other venues. 

Military Configurations 

In the late 1950s, military issues once again began to shape testing techniques at Langley. New fighter 
aircraft configurations began to show potentially dangerous  spin modes in spin tunnel tests and operational 
service, stimulating interest on the possibility of terminating the spin while the aircraft motions were still in 
the incipient phase. This emphasis was appropriate, because conventional recovery controls were, in many 
cases, found to be ineffective in terminating a fully developed spin, whereas recovery controls were effec-
tive in terminating the incipient spin motions if applied early after loss of control. At that time, military fighters 
continued to grow in size and weight, and the catapult facility at Langley was grossly inadequate for con-
ducting such investigations. Industry had become concerned over potential scale effects on long pointed 
fuselage shapes as a result of the XF8U-1 experiences in the Spin Tunnel, as discussed earlier. Thus, inter-
est was growing over the possible use of much larger models than those used in spin tunnel tests in order 
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Radio-controlled  drop  models  of  the  XF8U-1  and  the  X-1E  being  prepared  for  studies  of  incipient  spin  behavior  using  the  helicopter  drop-
model  technique  in  1958.  Note  the  large  flow  direction  vanes  used  on  the  nose  boom  of  the  XF8U-1  model.  Instrumentation  for  the  drop 
models  was  rapidly  advanced  and  miniaturized  in  subsequent  models. 

to eliminate or minimize undesirable scale effects. Finally, a major concern arose for some airplane designs 
over the launching technique used in the Spin Tunnel. Because the spin tunnel model was launched by 
hand in a flat attitude with forced rotation, it would quickly seek the developed spin modes—a valuable 
output—but the full-scale airplane might not easily enter the spin because of control limitations, poststall 
motions, or other factors. 

To meet the need for a testing technique for studying the incipient spin at a suitable scale, Langley devel-
oped the approach of using free-flying, radio-controlled models. The technique consisted of launching an 
unpowered model into gliding  flight from the helicopter, controlling the model from the ground with empha-
sis on evaluating the effects of control inputs on the incipient-spin motions, and retrieving the model with a 
recovery parachute when the flight was completed. Models used for the helicopter-drop tests were  
typically twice as large as the models used in the Spin Tunnel (1/9-scale, compared with the 1/20-scale). 
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One of the first configurations tested, in 1958, to establish the credibility of the drop-model program was 
a 6.3-foot-long, 90-pound model of the XF8U-1 configuration.2  With spin tunnel results in hand, the choice 
of this design permitted correlation with the earlier tunnel and aircraft flight-test results. As has been dis-
cussed, wind tunnel testing of the XF8U-1 fuselage forebody shape had indicated that pro-spin yawing 
moments would be produced  by the fuselage for values of Reynolds number below about 400,000, based 
on the average depth of the fuselage forebody. The Reynolds number for the drop-model tests ranged from 
420,000 to 505,000, where the fuselage contribution became anti-spin, and the spins and recovery charac-
teristics of the drop model were similar to the full-scale results. In particular, the drop model did not exhibit 
the flat spin mode predicted by a smaller spin tunnel model. The drop-model tests agreed with results of the 
aircraft flight tests. In addition to demonstrating the value of larger models from a Reynolds number per-
spective, these pioneering tests provided valuable information on the use of ailerons for prompt recovery of 
the XF8U-1 during poststall motions and the incipient spin. 

NASA  successfully conducted the XF8U-1 drop tests at the West Point, VA, airport, and the site quickly 
became active with investigations of other configurations. In 1959, the development of the X-15 research 
airplane had proceeded to include free-flight testing in the Full-Scale Tunnel, spin tunnel tests, and wind 
tunnel static tests over the range of Reynolds numbers corresponding to model flight tests. Results of the 
static tunnel testing had indicated that significant aerodynamic differences existed between all models 
(including a proposed drop model) and the full-scale aircraft for angles of attack greater than about 20 
degrees. However, little was known about the relative effectiveness of the all-movable horizontal tails that 
were used for roll control on the X-15 for terminating out-of-control motions. Therefore, a drop-model study 
was undertaken to determine  the behavior of the configuration during large-amplitude motions in the high-
angle-of-attack region, where stalls, directional divergences, and spins were likely to be encountered.3  The 
results of the drops indicated that the all-movable tail surfaces were effective for angles of attack below 
about 20 degrees, and although the model motions for much higher angles of attack did not necessarily 
represent those of the airplane, the application of roll control provided by the tail provided rapid recoveries 
for those conditions. 

However, on flights in which the X-15 drop model was subjected to rapid pitching rates with simultaneous 
roll inputs, divergent conditions were encountered as a result of inertial coupling between lateral and longi-
tudinal motions. Incipient spins followed the divergence, and the researchers demonstrated that roll control 
inputs in the direction of rotation could recover the model. Inertial coupling had been encountered in other 
aircraft development programs, and the X-15 design team appreciated the potential seriousness of the 
condition. Together with the results of the earlier wind tunnel free-flight model tests, the dynamic model 
tests at Langley provided a high level of confidence that conventional wing-mounted ailerons would not be 
required for the X-15 and that the all-moving tail concept was viable. 

Success in applications of the drop-model technique for studies of spin entry led to the beginning of many 
military requests for evaluations of emerging fighter aircraft. In 1959, the Navy requested an evaluation of 
the McDonnell F4H-1 Phantom II airplane using the drop technique at West Point.4  Earlier spin tunnel tests 
of the configuration indicated the possibility of two types of spins; one was steep and oscillatory, from which 
recoveries were satisfactory, and the other was fast and flat, from which recovery was difficult or impossible. 
As mentioned, the spin tunnel launching technique had led to questions regarding whether the airplane 
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would exhibit a tendency toward the steeper spin or the more dangerous flat spin. The objective of the drop 
tests was to determine if it was likely, or even possible, for the F4H-1 to enter the flat spin. 

In addition to following the general drop-model test procedure of launching an unpowered model from a 
helicopter in forward flight and controlling the model remotely from ground stations, researchers used an 
additional launching technique in an attempt to 
obtain a developed spin more readily and to 
obtain the flat spin. This technique consisted of 
prerotating the model on the helicopter launch 
rig before it was released in a flat attitude with 
the helicopter in a hovering condition. To reach 
even higher initial rotation rates than could be 
achieved on the launch rig, a detachable flat 
metal plate was attached to one wingtip. After 
the model appeared to be rotating sufficiently 
fast after release, the vane was jettisoned by the 
ground-based pilot, who, at the same time, 
moved the ailerons against the direction of rota-
tion to help promote the spin. The model was 
then allowed to spin for several turns after which 
recovery controls were applied. In many aspects, 
this approach to testing replicated the spin tun-
nel launch technique but at a larger scale. 

The  launch  helicopter  with  the  drop  model  of  the  F4H-1  in  an  extended 
position  on  its  launch  rig  prepares  to  climb  to  altitude  at  West  Point  in 
1960.  The  primary  objective  of  the  tests  was  to  establish  the  relative 
ease  with  which  the  model  would  enter  a  flat  spin. 

Results of the drop-model investigation for the F4H-1 are especially notable because it established the 
value of the testing technique to predict spin tendencies as verified by full-scale results. A  total of 35 flights 
were made, with the model launched 15 times in the prerotated condition and 20 times in forward flight. 
During these flights, poststall gyrations were obtained on 21 occasions, steep spins were obtained on 10 
flights, and only 4 flat spins were obtained. No recoveries were possible from the flat spins, but only one flat 
spin was obtained without prerotation. The conclusions of the tests stated that the aircraft was more sus-
ceptible to poststall gyrations than it was to spins; that the steeper, more oscillatory spin would be more 
readily obtainable; that recovery could be made by the recommended control technique; and that the likeli-
hood of encountering a fast flat spin was relatively remote. Ultimately, these general characteristics of the 
airplane were replicated at full-scale test conditions during spin evaluations by the Navy and Air Force. 

In 1960, the Navy once again requested drop-model tests, this time for the emerging North American A3J 
(later redesignated A-5 or RA-5) Vigilante attack aircraft.5  The A3J configuration incorporated several 
unconventional features that might have affected its spin and recovery, including an all-movable horizontal 
tail for pitch control, a wing spoiler-deflector combination for roll control, and an all-movable vertical tail for 
yaw control. As was the case for the F4H-1, the spin tunnel test results for the A3J had indicated the pos-
sibility of a fast flat spin, from which recovery was difficult or impossible, and the issue of whether the air-
plane could easily enter the spin had initiated the Navy request. Once again, prerotating the model and 
releasing it from the helicopter at hovering conditions was used to promote spins. Only 9 spins were 
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A  busy  day  of  testing  for  the  drop-model  test  unit  at  West  Point  in  1960.  Models  being  prepared  for  tests  include  models  of,  front  to  rear, 
the  Navy  A3J  attack  fighter,  a  NASA  Langley  hypersonic  reentry  shape,  and  the  Navy  F4H-1  fighter. 

obtained in 22 attempts, with 4 spins resulting from prerotated launches. However, satisfactory spin recov-
eries were not obtained from any of the spins. These results were immediately transferred to the airplane 
flight-test team and ultimately to the operational fleet, emphasizing the need to recognize the onset of a spin 
in its early stages and to terminate any turning tendency after the stall by rolling the airplane in the same 
direction as the turn. 

Langley also conducted many spin, recovery, and incipient-spin studies of various versions of the Lock-
heed F-104 Starfighter during its development cycle. Several models with various configuration changes 
had been tested in the Spin Tunnel, and a one-seventh-scale model was used for drop-model testing.6  
Results of the spin tunnel tests and the drop-model tests indicated that it would be difficult to obtain a devel-
oped spin for the F-104. In the case of the helicopter-drop model, 11 attempts to spin the model by prerotat-
ing it and releasing it in a spinning attitude from the helicopter in a hovering condition resulted in only 2 
spins. The model predictions  agreed well with the full-scale airplane characteristics, the most significant 
factor being the difficulty of obtaining a developed spin. 

Beginning in the early 1960s, a flurry of military aircraft development programs resulted in an unprece-
dented workload for the drop-model personnel.7  Support was requested by the military services for the 
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General Dynamics F-111, Grumman F-14, McDonnell-Douglas F-15, Rockwell B-1A, and McDonnell- 
Douglas F/A-18 development programs. In addition, drop-model tests were conducted in support of the 
Grumman X-29 and DARPA-sponsored X-31 research aircraft programs, which were scheduled for high-
angle-of-attack, full-scale flight tests at the Dryden flight facility. The specific objectives and test programs 
conducted with the drop models were different for each configuration. Spin tunnel testing had indicated that 
both the F-111 and F-14 would exhibit unrecoverable flat spins, and as the development of the full-scale 
aircraft proceeded, it became  critical to determine the susceptibility of the configurations to enter the flat 
spin and to determine recommendations for recovery after loss of control and the incipient spin motions. 

The F-111 drop tests in 1965 showed that the model would enter the flat spin relatively easily after misap-
plication of controls at poststall angles of attack. Once the model entered the flat spin, recovery was impos-
sible, as had been experienced during the spin tunnel tests. Nearly every control combination was evalu-
ated for recovery, including  sweeping 
the wings forward and rearward during 
the recovery process. After  over  50  suc-
cessful  tests  of  two  1/9-scale  F-111  drop 
models,  recommendations  for  recovery 
control  procedures  were  forthcoming 
and  provided  to  the  industry-military 
team  before  the  full-scale  aircraft  flight 
program.  The  spin  susceptibility  charac-
teristics  predicted  by  the  drop  models 
were  verified  in  the  flight  program,  which 
had  benefited  by  the  early  indication  that 
the  configuration  would  readily  enter  a 
flat  spin.  During  its  service  life,  the  F-111 
was  modified  to  include  a  stall-inhibitor 
system  within  its  flight  control  system  to 
help  protect  the  pilot  from  inadvertent 
excursions  into  poststall  conditions  that 
might  precipitate  spins. 

A  one-ninth-scale  model  of  the  F-111  awaits  launch  from  the  helicopter  over  the 
Plum  Tree  Island  test  site  in  1968.  Two  models  were  used  in  the  program,  which 
included  follow-on  NASA  research  on  automatic  spin  prevention  systems  after 
direct  support  of  the  F-111  development  efforts  were  completed. 

As frequently happened in joint NASA-military programs, after the immediate aircraft development sup-
port activities had been completed, NASA  retained the models (which had been fabricated with military 
funds) for general research. In 1969, a one-ninth-scale F-111 drop model was the subject of the first focused 
NASA  research  on automatic spin prevention.8  The use of an automatic control system to sense and apply 
spin recovery controls was not new, but the concept would require special sensors and control system logic 
that would be used infrequently and would probably be maintenance intensive and failure prone. In the late 
1960s, however, aircraft were on the drawing boards, with digital flight controls providing an unprecedented 
opportunity for sensing out-of-control situations and automatically applying recovery controls more rapidly 
than could a disoriented pilot. In addition, the special sensors that would be required to detect loss of control 
at high angles of attack were routine elements for conventional flight. Thus, special spin prevention systems 
would not require unique sensors that might be used infrequently. 
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However, considerable skepticism existed in the military community regarding the feasibility of  
automatic departure and spin prevention. The concept of “taking control away from the pilot” would  
require extensive demonstrations to the test and evaluation communities. In a special project, NASA  
designed control system logic algorithms and implemented an automatic spin prevention system for the 
F-111 drop model. Analytical studies, piloted simulator evaluations, and drop testing of the F-111 model 
were coordinated for an evaluation and demonstration of the effectiveness of automatic systems. Drop tests 
of the basic configuration without the automatic system showed that the model would enter a spin quite 
easily (for instance, with only longitudinal control). A  fast flat spin was encountered, from which recovery 
could not be effected. With the automatic spin prevention system engaged, 19 attempts at spin entry were 
made during the drop tests, and no spins ever developed, even though the pilot maintained full pro-spin 
rudder and aileron deflections. 

The activity to evaluate embryonic automatic spin prevention with the F-111 model was an unqualified 
success and quieted the skeptics, with the test results rapidly disseminated to the industry and military. 
Building on this fundamental study, designers of highly maneuverable aircraft have routinely incorporated 
special control system logic  in digital flight control systems for enhanced carefree behavior at high  
angles of attack. 

Early spin tunnel tests of the F-14 in 1970 revealed that the configuration might exhibit a fast flat unrecov-
erable spin mode and that the flat spin could not be terminated, even with an acceptable-sized parachute. 
This spin mode was deemed especially dangerous because the airplane might rotate rapidly (about 2 sec-
onds per turn) about a vertical axis through its center of gravity, while descending vertically with the fuse-
lage and a relatively horizontal attitude. Because of the high rate of rotation, the g-forces at the cockpit 
location would be high (approximately 6.5 longitudinal g’s outward) and would probably incapacitate the 
pilot. After extended spin tunnel testing, it was found that a combination of anti-spin controls, a parachute 
with the maximum diameter acceptable, and foldout auxiliary canards on the fuselage forebody might pro-
vide for a marginally satisfactory recovery from the flat spin. 

The issue of how easily the airplane might enter the unrecoverable spin once again became high priority 
for the Langley  staff. Time was of the essence in addressing this issue for the F-14, and a two-pronged 
approach to drop-model tests was taken. It was decided to instrument two models that were already under 
fabrication so as to determine how easily would the airplane enter the flat spin and what control inputs were 
required to recover at various stages of the incipient spin. The first model was designed to quickly address 
the issues. It was equipped with a minimum of instrumentation, thereby avoiding unnecessary delays 
required to calibrate instruments, download data, and recalibrate data. The experienced drop-model team 
reverted to the earlier technique it had used for previous models at West Point, in which a miniature movie 
camera was carried onboard in one of the model’s engine inlets and pointed forward so it could record the 
attitudes of vanes mounted to a nose boom for indications of angle of attack and angle of sideslip. Using 
this approach, the Navy could be provided answers in weeks rather than months. The second model was 
outfitted with sophisticated electronic instrumentation to provide quantitative information on angular rates, 
linear accelerations, control positions, and other flight variables. Testing of the second model could be con-
ducted more leisurely to obtain quantitative data for analysis and correlation with analytical and simulator 
results. 
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The two-model approach to testing for the F-14 had been recommended by the Langley staff and approved 
by  the  Navy  and  Grumman  as  an  expedient  method  to  provide  accurate  information.  Drop  testing  of  the  first 
F-14  model  was  soon  underway  after  an  intensive  high-priority  fabrication  and  outfitting  process,  providing 
an  early  indication  of  the  spin  resistance  of  the  airplane.  Initial  flight  tests  involved  applications  of  aggravated 
pro-spin  control  inputs  and  resulted  in  entry  into  the  unrecoverable  flat  spin.  Repetitive  tests  showed  that  the 
model  could  easily  be  flown  into  the  spin;  however,  results  indicated  that  the  pro-spin  inputs  would  have  to 
be  maintained  for  almost  two  turns  before  the  spin 
became  fully  developed.  Thus,  corrective  control 
inputs  applied  early  in  the  motions  were  effective  in 
promoting  recovery  back  to  conventional  flight. 

Using the simplified model technique, the Langley 
staff was productive, with minimal turnaround time 
required. For example, during  a single test day, the 
team conducted 35 spin entry evaluations. A  few 
months after the simplified model testing began, the 
more-instrumented second model entered testing, 
obtaining data that were invaluable for analysis and 
inputs to analytical studies and other analyses. Com-
bining these data with static and dynamic wind tun-
nel aerodynamic data generated during conventional 
tunnel tests of F-14 models, piloted simulator studies 
of the high-angle-of-attack characteristics of the 
F-14 were conducted in the Langley Differential 
Maneuvering Simulator in 1972 with a NASA-
designed automatic departure and spin prevention 
concept.9  The basic control concept developed in 
the NASA  simulator studies underwent evaluation in 
full-scale F-14 flight tests in a joint NASA–Navy– 
Grumman program at Dryden. After a lengthy gesta-
tion, a derivative of the concept was applied to the 
F-14 fleet in a new advanced digital flight control 
system in the 1990s. 

The  F-14  aircraft  was  used  for  the  joint  NASA–Grumman–Navy 
assessment  of  automatic  control  concepts  for  enhanced  high-
angle-of-attack  behavior.  NASA’s  use  of  free-flight  models  in  the 
Full-Scale  Tunnel,  the  Spin  Tunnel,  and  the  drop-model  operation 
provided  substantive  data  for  the  planning  of  the  program. 

Almost simultaneous with the F-14 activity, an Air Force request for drop-model evaluations of the F-15 
was received. The F-15 had been designed with special consideration of spin resistance, and the configura-
tion included mechanical aileron-rudder control interconnects to enhance maneuverability at high angles of 
attack while maintaining resistance to inadvertent spins. Analytical studies and NASA  free-flight wind tunnel 
tests in the Langley Full-Scale Tunnel had indicated that the design objective had been met and that the 
aircraft would exhibit spin resistance. The objective of the drop-model program, therefore, had an uncon-
ventional theme, in that the researchers attempted to discover control manipulations and aggravated appli-
cations that would overpower the inherent spin resistance of the F-15 design and promote spins. Initial 
results of drop-model tests at Plum Tree in 1971 validated the effectiveness of the airframe and control 

CHAPTER 7: SPIN ENTRY AND POSTSTALL MOTIONS 



128 MODELING FLIGHT  

system of the F-15, which was judged to be one of the more spin resistant aircraft tested in the long series 
of Langley evaluations. Initially frustrated by an inability to spin their F-15 drop model, the Langley research-
ers worked out a control input sequence that resulted in spins for a constrained set of control conditions. A  
particularly productive technique involved movement of the control stick while full roll control was applied to 
promote the spin. When the technique was applied in the drop tests, spins could be produced at will. This 
control technique was adopted in the full-scale F-15 flight program for promoting spins. 

During the early 1970s, the NASA  Dryden Flight Research Center had begun efforts to develop a sophis-
ticated remotely piloted research vehicle (RPRV) testing technique wherein relatively large models were 
launched from a B-52 mother ship and controlled from a realistic ground-based cockpit by a research test 
pilot. After the Langley spin tunnel and drop-model tests were underway, the Dryden staff conducted a 
large-scale unpowered model drop test in 1973 to evaluate the departure and spin characteristics of the 
F-15, and to demonstrate the application of the drop technique at a larger scale.10  The drop model used for 
the tests at Langley was a 13-percent-scale model, whereas the model used for the Dryden study was a 
38-percent-scale model. 

Initial results of the Dryden flights for the basic F-15 verified the departure and spin resistant characteris-
tics shown by the smaller model at Langley. In the Dryden study, the model flight tests were augmented by 
piloted simulator studies based in part on aerodynamic data extracted from the flights. Using the simulator, 
Dryden researchers verified Langley’s techniques to defeat the spin resistance features of the flight control 
system. When results between the 13-percent and 38-percent models were correlated with the airplane 
results, it was found that the agreement was good, including control strategies to overcome the inherent 
spin resistance of the configuration. 

A  drop-model  study  at  Langley  in 
1974  in  response  to  an  Air  Force 
request  to  support  development  of  the 
B-1A  bomber  was  short-lived,  consist-
ing  of  only  a  few  flights.  With  its  wings 
swept  to  moderate  and  aft-sweep  posi-
tions,  the  configuration  exhibited  a 
severe  longitudinal  instability  in  the 
form  of  an  abrupt  pitch-up  at  high 
angles  of  attack.  For  this  particular  air-
craft  configuration,  the  free-flight  test  in 
the  Full-Scale  Tunnel  was  sufficient  to 
define  the  critical  problems  of  the 
design,  and  the  drop-model  program 
was  relatively  unproductive.  A  stall 
inhibitor  system  was  incorporated  in 
the  follow-on  B-1B  flight  control  system 
to  limit  the  achievable  angle  of  attack  to 
values  within  the  flight  envelope. 

The  0.38-scale  F-15  RPRV  lands  on  the  lakebed  at  NASA  Dryden  after  a  success-
ful  flight. 
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A  Navy  request  in  1978  for  drop-model 
testing  to  define  the  spin  resistance  charac-
teristics  of  the  F/A-18A  resulted  in  a  signifi-
cant  upgrade  to  the  Langley  testing  tech-
nique.  When  the  F/A-18A  was  developed  as 
one  of  the  first  digital  fly-by-wire  configura-
tions,  it  became  mandatory  to  represent  its 
complex  high-angle-of-attack  control  logic 
and  control  surface  scheduling.  As  an 
investment  in  the  F/A-18A  development  and 
its own future interests, the Navy funded an 
upgrade  for  the  Langley  drop-model  test 
technique  based  on  ground-based  digital 
computers  for  simulation  of  advanced  flight 
control  laws.  The  technical  results  of  the 
program  verified  the  high  degree  of  spin 
resistance  of  the  F/A-18A  and  contributed  to 
flight-test  guidance  and  knowledge. 

NASA  support  of  the  F/A-18A  development  program  included  a  major  
upgrade  of  the  ground-based  flight  control  system.  A  digital  computer  was 
introduced  for  simulation  of  the  critical  components  of  the  control  system  for 
the  full-scale  airplane. 

In addition to the support testing of specific DOD aircraft, NASA  conducted drop-model tests of the X-29 
and X-31 research aircraft.11  In 1987, Langley once again upgraded its drop-model test technique for testing 
of the X-29 configuration. Langley had never flown an unstable drop model before the X-29 activity. Nearly 
every element of the testing technique, including model control actuators, transmitters and receivers, data 
importers and decoders, and operational displays had to be updated to fly the sophisticated, inherently 
unstable aircraft. The challenges to conduct the activity were the most significant ever posed to the Langley 
drop-model team. The results of the X-29 drop program demonstrated that advanced control systems would 
play a large role in poststall motions and spin resistance. In the case of the X-29, without artificial stabiliza-
tion in roll, the drop model demonstrated 
large-amplitude rolling oscillations that 
became unstable at angles of attack above 
30 degrees, followed by a departure and 
poststall gyrations. However, when ele-
ments of the full-scale control system were 
appropriately represented, the model was 
resistant to intentional spins and was 
maneuverable at high angles  of attack. In 
addition to providing support and guidance 
for the full-scale flight-testing, Langley con-
ducted fundamental research  with the drop 
model, including the extraction of aerody-
namic parameters during the complex roll-
ing motions exhibited by the unaugmented 
airplane. 

The  X-31  drop  model  is  inspected  in  1991.  The  drop  program  ran  simultane-
ously  with  the  full-scale  flight  program  being  conducted  at  Dryden,  providing 
real-time  support  for  problems  that  occurred  in  flight. 
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Some  of  the  drop  models  used  in  support  of  the  Nation’s  military  programs  are  shown  in  this  photograph  of  1994  with  lead  Langley 
researcher  Mark  Croom. 

The 0.27-scale drop model used in support of the X-31 program at Langley was larger than any drop 
model previously tested, weighing over 540 pounds. This particular drop model was key during full-scale 
flight-test evaluations of the X-31 aircraft at Dryden in the early 1990s. Two problems that surfaced during 
the flight tests had resulted in delays in the flight program  while solutions were found. The first problem 
involved a lack of sufficient nose-down aircraft response to control inputs at extreme angles of attack. In 
support of the project, Langley conducted wind tunnel testing in the Full-Scale Tunnel to define a pair of 
fuselage afterbody strakes that promoted nose-down recovery. The second problem involved uncontrolla-
ble large asymmetric yawing moments by the aircraft at high angles of attack. Once again, Langley con-
ducted tunnel tests and provided a solution involving nose strakes on the forebody. Both the forebody and 
afterbody strakes were evaluated and demonstrated using the X-31 drop model in almost real-time fashion 
and adapted for the full-scale aircraft, which demonstrated unprecedented maneuverability at extreme 
angles of attack. The X-31 drop-model program was arguably one of the more valuable tools used to ensure 
the success of this revolutionary aircraft. 

Most of the drop-model activities in this section were conducted at Langley’s satellite test site at nearby 
Plum Tree Island. After the X-31 project, NASA  closed its Plum Tree site in 1995, restored the area to its 
original wildlife refuge environment, and conducted extensive studies of alternate locations for drop-model 
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studies. When the Navy began development of its F/A-18E/F Super Hornet, Langley tested a sophisticated 
drop model at the NASA  Wallops Flight Facility to provide risk reduction for the high-angle-of-attack part of 
the full-scale flight-test program. The tests, which used a large 0.22-scale model required additional changes 
to the testing technique hardware and procedures.12 

The  F/A-18E  model  used  in  the  test  at  Wallops  weighed  between  880  to  1,100  pounds  for  various  test  con-
ditions  and  was  dropped  from  a  special  helicopter  at  altitudes  of  about  15,000  feet  (compared  to  about  3,000 
feet  for  the  earlier  Plum  Tree  test  programs).  During  flights,  the  model  was  tracked  by  a  manually  operated 
ground-based  tracker  equipped  with  video  cameras,  a  radar-ranging  system,  and  telemetry  antennas.  A  cam-
era  was  mounted  in  the  cockpit  to  provide  an  onboard  view  of  the  flight.  Data  generated  by  the  drop-model 
program  covered  more  areas  than  past  programs  had.  For  example,  in  recent  years,  concern  had  arisen  over 
the  ability  of  highly  maneuverable  fighters  to  generate  crisp  nose-down  control  for  recovery  from  high  angles 
of  attack.  In  the  drop  program,  the  model  was  stabilized  near  maximum  lift,  and  a  rapid  nose-down  control 
was  applied,  resulting  in  good  correlation  with  response  characteristics  exhibited  by  the  airplane. 

Spin resistance and recovery studies included assessing the effectiveness of the sophisticated F/A-18E/F 
control system, which includes extensive elements for pilot-directed spin recovery inputs. The model (and 
the airplane) exhibited a reluctance to spin after conventional spin entry maneuvers. Instead, large ampli-
tude oscillations began and produced self-recovery from the spin attempt. Extensive evaluations of the 
impact of entry rates on spin resistance were conducted, and unusual poststall gyrations known as the 
“cartwheel” and “falling leaf” were exhibited with good correlation with spin tunnel tests and full-scale flight 
results. Quantitative correlation of all drop-model results with piloted simulator results and data from full-
scale flight tests was an intimate part of this program. The program also investigated both upright and 
inverted departure and spin characteristics with and without asymmetric mass loadings. Without doubt, the 
F/A-18E drop-model program was the most sophisticated and extensive technical study ever undertaken 
using a drop-model technique at Langley. 

General-Aviation Configurations 

In the early 1970s, fatal stall/spin accidents within the general-aviation community had increased at an 
alarming rate, and it was widely recognized that spin research for this type of aircraft had not kept up with 
the pace of new airplane designs for almost 20 years. In recognition of this void in technology, Langley 
started a general-aviation spin research program in 1972, with the primary objectives of determining how 
various parameters affect spin and recovery characteristics, providing data on parachute size required for 
emergency spin recovery for typical light airplanes during spin tests, developing a radio-control powered-
model testing technique that a manufacturer could utilize in aircraft development, and validating model test 
results by correlation with full-scale airplane results.13  The configurations selected for the program included 
low and high wing designs considered representative of modern light general-aviation airplanes. Although 
based on specific airplane configurations, the designs to be studied were intentionally modified from the 
basic airplane with significant geometric changes. 

A  key element in the general-aviation spin program was the use of powered radio-controlled models to 
study spin resistance, spin entry, and spin recovery during the incipient phase of the spin. Equally important 
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was a focus on developing a reliable, low-cost testing technique that the industry could use for predictions 
of characteristics in early design stages. The dynamically scaled models, which were about 1/5-scale (wing-
span of about 4–5 feet), were powered and flown with hobby equipment. Although resembling conventional 
radio-control models flown by hobbyists, these scaled models were relatively heavy (about 15–20 pounds) 
compared with conventional hobby models (about 6–8 pounds). 

The radio-controlled model activities in the 
Langley program consisted  of three distinct 
phases. Initially, model testing and analysis were 
directed at producing timely data for correlation 
with spin tunnel and full-scale flight results to 
establish the accuracy of the model results in pre-
dicting spin and recovery characteristics, and to 
gain experience with the testing technique. The 
second phase involved assessments of the effec-
tiveness of wing leading-edge modifications to 
enhance the spin resistance of several general-
aviation configurations. The focus of this research 
was a concept consisting of a drooped leading 
edge on the outboard wing panel with a sharp dis-
continuity at the inboard edge of the droop. The 
third phase involved cooperative studies of spe-
cific general-aviation designs with manufactures 
and designers. In this segment of the program, 
studies centered on industry’s assessment of the 
radio-controlled model technique. Model flight-
testing for the cooperative programs was con-
ducted near Langley at the West Point, VA, air-
port, the Langley Plum Tree test site, and the 
locations of manufacturers. 

The  NASA  general-aviation  spin  research  program  of  the  1970s  
included  extensive  correlation  studies  of  results  obtained  with  spin 
tunnel  tests,  radio-controlled  model  tests,  and  airplane  flight  tests. 
Many  key  parameters  were  studied,  including  the  effects  of  tail  con-
figuration  as  shown  for  the  low  wing  research  model. 

Direct  correlation  of  results  for  radio-controlled  model  tests  and  full-scale  airplane  results  for  a  low  wing 
NASA  configuration  was  good,  especially  with  regard  to  susceptibility  of  the  design  to  enter  a  fast  flat  spin  with 
poor  or  no  recovery.14  In  addition,  the  effects  of  various  control  input  strategies  agreed  well.  For  example,  with 
normal  pro-spin  controls  and  any  use  of  ailerons,  the  radio-controlled  model  and  the  airplane  were  both  reluc-
tant  to  enter  the  flat  spin  mode  that  had  been  predicted  by  spin  tunnel  tests;  they  only  exhibited  steeper  spins, 
from  which  recovery  could  be  effected.  Subsequently,  the  test  pilot  and  flight-test  engineers  of  the  full-scale 
airplane  developed  a  unique  control  scheme  during  flight  tests  that  would  aggravate  the  steeper  spin  and 
propel  the  airplane  into  the  unrecoverable  flat  spin.  When  a  similar  control  technique  was  used  on  the  radio-
controlled  model,  it  also  would  enter  the  flat  spin,  requiring  the  use  of  the  emergency  parachute  for  recovery. 

Arguably, the most impressive results of the radio-controlled model program for the low wing configura-
tion related to the ability of the model to demonstrate effects of the discontinuous leading-edge droop 
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This  T-tail  low  wing  NASA  research  aircraft  displays  the  discontinuous  wing  leading-edge  modification  that  significantly  increased  the 
spin  resistance  of  configurations  in  NASA’s  stall/spin  program.  Radio-controlled  model  results  for  another  low  wing  configuration  agreed 
well  with  full-scale  flight  results. 

concept that had been developed by Langley for improved spin resistance.15  Several wing leading-edge 
droop configurations had been derived in wind tunnel tests with the objective to delay wing autorotation and 
spin entry to high angles of attack. Tests with the radio-controlled model when modified with a full-span 
droop indicated  better stall characteristics than did the basic configuration, but the resistance of the model 
to enter the unrecoverable flat spin was degraded. The flat spin could be obtained on nearly every flight if 
pro-spin controls were maintained beyond about three turns after stall. 

In contrast to this result, when the discontinuous droop was applied to the outer wing, the model would 
enter a steep spin from which recovery could be attained by simply neutralizing controls. When the discon-
tinuity on the inboard edge of the droop was faired over, the model reverted to the same characteristics that 
had been displayed with the full-span droop and could easily be flown into the flat spin. Correlation between 
the radio-controlled model and aircraft results in this project were outstanding. The agreement was particu-
larly noteworthy in view of the large difference between the model and full-scale Reynolds numbers. All of 
the important stall/spin characteristics displayed by the low wing radio-controlled model with the full-span 
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droop configuration and the outboard droop configuration (with and without the fairing on the discontinuous 
juncture) were nearly identical to those exhibited by the full-scale aircraft, including stall characteristics, 
spin modes, spin resistance, and recovery characteristics. 

While conducting the technical objectives of the radio-controlled model program, researchers directed an 
effort at developing test techniques that might be used by industry for relatively low-cost testing. Innovative, 
low-cost instrumentation techniques were developed that used inexpensive onboard sensors to measure 
control positions, angle of attack, airspeed, angular rates, and other variables. Data output from the sensors 
was transmitted to a low-cost, ground-based data acquisition station by modifying a seven-channel radio-
control model transmitter. The ground station consisted of separate receivers for monitoring angle of attack, 
angle of sideslip, and control commands. The receivers operated servos to drive potentiometers, whose 
signals were recorded on an oscillograph recorder. Tracking equipment and cameras were also devel-
oped.16 Other facets of the test technique development included the design and operational deployment of 
emergency spin recovery parachutes for the models. 

One particularly innovative testing technique demonstrated  by NASA  in the radio-controlled model flight 
programs was miniature auxiliary rockets mounted on the wingtips of models to artificially promote flat 
spins. This approach was particularly useful in determining the potential existence of dangerous flat spins, 
which were difficult to enter from conventional flight. In this application, one of the rockets was remotely 
ignited during a spin entry by the pilot, resulting in high spin rates and a transition to high angles of attack 
and flat spin attitudes. After the “spin-up” maneuver was complete, the rocket thrust subsided, and the 
model either remained in a stable flat spin or pitched down to a steeper spin mode. 

General-aviation manufacturers maintained a close liaison with Langley researchers during the NASA  
stall/spin program, absorbing  data produced by the coordinated testing of models and full-scale aircraft. 
The radio-controlled testing technique was of great interest, and after frequent interactions with Langley’s 
test team, industry conducted  its own evaluations of radio-controlled models for spin testing. In the mid-
1970s, Beech Aircraft conducted radio-
controlled testing of its T-34 trainer aircraft, 
the Model 77 Skipper trainer, and the twin-
engine Model 76 Duchess.17  Piper Aircraft 
also conducted radio-controlled model 
testing to explore the spin entry, devel-
oped spin, and recovery techniques of a 
light twin-engine configuration.18  Later, in 
the 1980s, a joint program was conducted 
with the DeVore Aviation Corporation to 
evaluate the spin resistance of a model of 
a new high wing trainer that incorporated 
the NASA-developed leading-edge droop 
concept.19  As a result of these cooperative 
ventures, industry obtained valuable expe-
rience in model construction techniques, 

The Beech Aircraft Corporation conducted spin tests with this radio-controlled 
model of the YT-34 military trainer in 1976. Note the wingtip booms with flow 
vanes, the tail-mounted spin recovery parachute, and the wingtip rocket pods 
used for pro-spin inputs. 
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spin recovery parachute system technology, methods of measuring moments of inertia and scaling engine 
thrust, the cost and time required to conduct such programs, and correlation with full-scale flight-test results. 

Interestingly, the results obtained by Langley in 
the radio-controlled model studies of discontinu-
ous wing leading-edge droop have been reflected 
in recent model-airplane kits offered by manufac-
turers of conventional radio-controlled models. 
Some kit designers have included removable wing 
discontinuous droops in model kits as a safety 
enhancement to be used during the training of 
radio-control model pilots. The wing droops are 
provided as optional additions to the basic model 
wing configuration for enhanced stall and spin 
resistant behavior during training, after which they 
can be removed to permit full aerobatic maneu-
vers, including spin and recovery. The modifica-
tions have been referred to as “NACA  droops,” 
when in fact, they were developed in the NASA  
studies. 

Langley  researchers  pose  with  a  radio-controlled  model  used  in  a  
cooperative  program  on  spin  resistance  with  the  DeVore  Aviation  Cor-
poration.  The  model  was  equipped  with  discontinuous  outboard  droops 
and  proved  spin  resistant.  Note  the  low-cost  data  acquisition  unit. 

Jet Transport Upset Recovery 

Detailed analyses of causal factors in fatal accidents of modern large commercial transport aircraft indi-
cate that loss of control has been one of the leading contributors, usually involving losses of aircraft and 
lives. Many of the accidents have involved large excursions to poststall angles of attack or steep pitch and 
bank attitudes from which recovery may be difficult. As part of its Aviation Safety program, NASA  initiated a 
project in 1999 to improve the understanding and technologies required to minimize such accidents. 
Because large  attitude upsets to poststall conditions involve complex aerodynamic phenomena similar to 
those experienced in stall/spin motions and are difficult to mathematically model, dynamic models are a 
main  element  in  the  research.  The  NASA  Airborne  Subscale  Transport  Aircraft  Research  (AirSTAR)  project 
was  formulated  to  develop  the  test  techniques  and  a  flight  facility  for  research  and  validation  of  technologies.20  
The  objectives  include  defining  static  and  dynamic  aerodynamic  data  for  transport  aircraft  configurations  at 
high  angles  of  attack  and  sideslip  in  wind  tunnel  tests,  extracting  aerodynamic  data  from  flight  motions,  devel-
oping  flight  simulator  databases  for  studies  of  the  problem,  and  providing  technologies  for  adaptive  control 
applications  that  quickly  recognize  an  out-of-control  condition  and  enable  recoveries  from  the  situation. 

The AirSTAR activity includes a subscale flight research vehicle, an evaluation pilot, and the safety pilot. 
To date, the research models have ranged from small propeller-driven configurations to relatively large 
5.5-percent-scale models of generic transport configurations powered by turbine engines. The testing tech-
nique consists of a powered takeoff of the model from a runway while under control of the safety pilot using 
radio-control equipment. Once airborne at the test condition, control is passed to the research pilot seated 
in a mobile operations station. The research pilot uses a synthetic vision display and other graphic inputs to 
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set up the test condition, and a ground-based flight 
control computer in the operation station provides 
inputs for control laws and interface with research pilot. 
All flights are conducted within view of the safety pilot, 
who can override the research pilot inputs in an emer-
gency. At the end of the research task, the research 
pilot hands off control of the model to the safety pilot, 
who performs the landing. 

Progress  in  the  AirSTAR  project  has  emphasized  the 
development  of  the  hardware,  software,  and  skills 
required  for  the  focused  objectives  of  the  research  tasks. 
The  latest  model  flight  tests  have  been  conducted  with  a 
commercial  off-the-shelf  transport  model,  which  has 
been  used  in  preparation  for  flights  of  a  more  expensive 
dynamically  scaled  model  of  a  current  jet  transport  con-
figuration.  An  extensive  aerodynamic  database  has 
already  been  gathered  for  the  scaled  model  during  tests 
in  the  Langley  14- by  22-Foot  Subsonic  Tunnel  and  is 
awaiting  correlation  with  flight-derived  data.  The  scope 
of  current  activities  includes  real-time  system  identifica-
tion,  advanced  controls  designed  for  recovery  from 
upset  conditions,  and  advanced  methods  for  air  data 
measurements.  Flight-testing  of  the  dynamically  scaled 
model  will  incorporate  lessons  learned  and  risk  mitiga-
tion  strategies  from  the  precursor  evaluations  of  the 
commercially  available  transport  model. 

In preparation for model flight tests in the AirSTAR project, 
Langley has conducted conventional and dynamic force tests 
in the 14- by 22-Foot Tunnel to measure the aerodynamic 
characteristics of the configuration. 

Tumbling 

Since  the  earliest  days  of  flight,  it  has  been  recognized  that  certain  configurations  might  be  susceptible  to  a 
phenomenon  known  as  tumbling.  Tumbling  is  characterized  as  an  autorotative  pitching  motion  in  which  the 
aircraft  continually  rotates  360  degrees  in  pitch  while  descending  along  an  inclined  flight  path.  For  many  con-
figurations,  the  tumbling  motion  cannot  be  terminated  with  conventional  aerodynamic  controls,  and  the  phe-
nomenon  must  be  avoided  during  excursions  to  high  angles  of  attack.  Flying  wing,  tailless,  and  statically  unsta-
ble  aircraft  designs  have  been  particularly  susceptible  to  tumbling.  The  phenomenon  has  been  suspected  as 
the  cause  of  the  crash  of  the  Northrop  YB-49  in  the  late  1940s.  The  NACA  conducted  extensive  studies  of 
tumbling  in  the  Spin  Tunnel  at  Langley  during  World  War  II.  The  testing  procedure  consisted  of  releasing  a 
model  in  the  vertical  airstream  of  the  tunnel  without  rotation  in  a  nose-up  attitude  simulating  a  “whip”  stall  to  zero 
airspeed.  Tests  of  a  model  of  the  flying  wing  Northrop  XB-35  in  the  tunnel  highlighted  the  unrecoverable  nature 
of  the  tumbling  motions,  which  could  only  be  avoided  by  moving  the  center  of  gravity  of  the  model  forward.21  
Other  configurations  found  susceptible  to  tumbling  during  spin  tunnel  tests  included  the  tailless  forward-swept 
wing  Corneilius  XFG-1  towed  fuel  glider,  the  tailless  Douglas  XF4D,  and  the  Northrop  X-4  research  airplane.22  
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Interest in tumbling was renewed when the concept of relaxed longitudinal 
stability was introduced for radical configurations such as the Grumman 
X-29. The X-29 was designed to have a high level of inherent aerodynamic 
instability about the pitch axis. In conventional flight, a multichannel stability 
augmentation system deflected the longitudinal control surfaces to maintain 
a satisfactory level of stability. As part of its general investigation of spin and 
recovery characteristics of the X-29, Langley evaluated the tumble suscepti-
bility of the configuration and the effectiveness of controls for recovery.23 

A  spin  model  of  the  X-29A  is  mount-
ed  on  a  free-to-pitch  test  appara-
tus  during  studies  of  the  tumbling  
resistance  of  the  configuration  in  the 
Spin  Tunnel.  The  test  setup  permit-
ted  360-degree  pitching  motions 
without  restraint. 

Langley’s research with radio-controlled parawing vehicle models demon-
strated that that class of vehicle might also be susceptible to tumbling.24  
During flight tests designed to evaluate the general controllability and stalling 
characteristics of a parawing  utility configuration, the model was found to 
have satisfactory stall behavior with no roll-off tendencies and a high degree 
of spin resistance, even with pro-spin controls applied by the pilot. However, 
after abrupt stalls (“whip stalls”), the model exhibited a violent longitudinal 
instability in which a strong initial nose-down motion was followed by an end-over-end tumbling motion. 
After the model was tumbling, the controls were ineffective in terminating the motion, and in one instance, 
the model completed approximately 20 to 25 tumbles before it crashed. A  close examination of the model 
during the tumbling motions revealed that it pitched nose down so rapidly that the billowing of the parawing 
fabric reversed direction and caused the rate of pitch to increase. The Langley researchers determined that 
an early application of recovery control applied before the model reached a vertical nose-down attitude 
could effect recovery and avoid tumbling. This type of in-depth free-flight model study of the dynamic stabil-
ity and control of parawing vehicles during large-amplitude maneuvers, coupled with wind tunnel force tests 
of the same model provided fundamental information and valuable guidance to designers and pilots. Even 
today, tumbling remains a significant concern for microlight recreational configurations.25 

In view of emerging interest in flying wings and relaxed stability for civil and military aircraft and the lack 
of guidelines for avoiding tumbling, Langley engaged in a generic investigation based on experimental 
results obtained with tailless models in the Spin Tunnel.26  The objectives of the program were to identify 
geometric and mass parameters that cause susceptibility to tumbling and to analyze some of the factors 
that cause steady-state tumbling motions. Twelve flying-wing models were tested in the Full-Scale Tunnel 
and the Spin Tunnel in a series of coordinated investigations, including in-depth measurements of static and 
dynamic aerodynamic parameters, free-tumble tests, and constrained free-to-pitch tests. The experimental 
study was augmented with analyses of aerodynamic characteristics, and the results of the integrated pro-
gram were summarized in terms of design variables such as wing aspect ratio, longitudinal stability, and 
mass distribution. 

Other Studies 

Over the years, free-flight models have been applied in other studies of poststall flight dynamics of inter-
est to the aviation community. Two examples of such applications involved supplying critical data to acci-
dent investigation  boards.  The  first  example  was  conducted  after  the  fatal  accident  of  a  British  BAC  111  jet 
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transport  in  a  fatal  accident  August  6,  1966,  near  Omaha,  NE.27  The  aircraft  was  seen  to  burst  into  flames  at 
an  altitude  of  about  5,000  feet  and  crash  in  a  flat  attitude  without  significant  forward  motion.  Analysis  indicated 
that  the  breakup  of  the  aircraft  had  been  caused  by  an  abrupt,  powerful  asymmetrical  gust  that  exceeded  the 
design  requirements  of  the  T-tail  structure,  and  that  the  aircraft  had  pitched  over  to  a  large  angle  of  attack, 
causing  the  outer  wing  panel  to  break  off.  Langley  spin  tunnel  engineers  built  a  crude  model  of  the  damaged 
airplane  and  proceeded  to  launch  it  from  the  250-foot-high  top  of  the  Langley  Lunar  Landing  Facility.  After 
being  catapulted,  the  model  tumbled  violently,  then  settled  into  a  slow  flat  spin  and  impacted  in  a  flat  attitude 
similar  to  the  full-scale  aircraft.  These  experimental  results  helped  the  accident  board  arrive  at  its  conclusions. 

Another example of the use of dynamically scaled models to provide a quick response to accident inves-
tigations was spin tunnel testing of the North American XB-70 configuration. At the request of the Air Force 
in 1965, tests had been conducted in the Spin Tunnel and at a catapult launch facility in a large airship 
hangar at the Weeksville Naval Air Facility at Elizabeth City, NC, to determine the potential spin entry and 
recovery characteristics of a 1/60-scale model of the XB-70.28  After the accident of XB-70 Ship 002 after an 
in-flight collision at Edwards Air Force Base during a photo mission June 6, 1966, additional tests were 
conducted by Langley with the 3-foot-long model of the XB-70 in the Spin Tunnel to assess its spin charac-
teristics in the damaged configuration after the collision.29  Of particular interest was the question of whether 
g-loads experienced at the cockpit location during a flat spin that followed the collision could have pre-
vented ejection from the airplane. For these tests, the XB-70 model was first tested in its basic undamaged 
configuration. It was then reconfigured to represent the damaged full-scale XB-70 as closely as possible, 
including removal of both vertical tails and the outer part of the left wing panel. Results of the tests showed 
that the basic configuration would exhibit a moderately flat spin and that the damaged configuration would 
spin even faster and flatter. The data from the Spin Tunnel were transmitted to the investigation board for 
use in its deliberations. 

Summary 

The application  of powered and unpowered free-flight models in studies of poststall motions such as spin 
entry and tumbling has provided insight into dynamic flight behavior that could not have been easily ana-
lyzed with other wind tunnel techniques. Properly integrated with piloted simulator studies, the techniques 
have been used to provide realistic predictions of the relative resistance of configurations to enter poten-
tially dangerous modes of motion. They have also been used to demonstrate the effectiveness of special 
control systems to prevent undesirable motions and provide “carefree” maneuvers. 

The development of relatively low-cost testing techniques that can be used by a wide segment of the 
aviation community has been  particularly valuable for designers of light personal-owner aircraft, and the 
experience gained with remotely piloted techniques for more sophisticated research models has pointed 
the way toward more quantitative information from model flight tests. 
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CHAPTER 8: 

ASSOCIATED TEST TECHNIQUES 

Aerodynamic Data 

A rguably, the most formidable challenge facing the stability and control analyst is an accurate prediction      
of the aerodynamic properties of the aircraft under consideration. Aircraft weight-and-balance charac-

teristics such as moments of inertia and center-of-gravity location are straightforward to quantify. However, 
aerodynamic data are typically complex and dependent on configuration details, dynamic motions, and 
effects of Reynolds number and Mach number. Regardless of their complexity, aerodynamic characteristics 
are the key factor in the analysis of stability and control. 

One of the more significant advantages of free-flight models is the possibility of measuring the  
aerodynamic characteristics of the model at the same value of Reynolds number used in the model flight 
tests. Potential scale effects are at least eliminated for the model study, and aerodynamic trends can be 
interpreted with confidence at model scale. An understanding of model trends is extremely helpful in inter-
preting data obtained at higher Reynolds numbers. Obtaining aerodynamic data before conducting free-
flight tests provides early inputs for identification of potential problems in stability and control characteristics 
that might be expected during the model flight tests. Correlation of the model’s aerodynamic data with 
results obtained from other wind tunnels, if available—especially for higher values of Reynolds number— 
ensures that the data magnitudes and trends are reasonable before flight-testing begins. Methods used to 
extract aerodynamic data from model flight tests via systems identification techniques can provide guidance 
when similar methods are used at other flight conditions not directly addressed in the model flight-test pro-
gram. After the aerodynamic data are analyzed and correlated with observations during free-flight model 
tests, they are typically used as inputs in more sophisticated analysis techniques such as piloted simulators. 
Used in this manner, the free-flight aerodynamic data provide credible inputs and realism for pilot evalua-
tions and training. 

In addition to conventional static wind tunnel force and moment tests, NASA  has conceived and devel-
oped unique dynamic wind tunnel test procedures to measure aerodynamic parameters caused by dynamic 
motions of aircraft. NASA  has also applied other dynamic testing, in which the model is permitted a single 
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degree of freedom, to study certain types of aircraft instabilities that occur for high angles of attack or sepa-
rated flow conditions. 

A  review of NASA  activities for the development and application of these wind tunnel aerodynamic testing 
techniques for free-flight models follows; however, the reader is referred to the excellent summary by 
Owens, et al.,1 for an in-depth review of the methods. 

Static Tests 

Whenever  possible,  a  wind  tunnel  free-flight  program  begins  with  conventional  static  aerodynamic  force 
and  moment  measurements  before  the  model  is  outfitted  for  flight  tests.  For  static  wind  tunnel  testing,  an 
electrical  strain-gauge  balance  is  mounted  within  the  fuselage  of  the  free-flight  model  to  provide  six-compo-
nent  measurements  of  forces  and  moments.  Longitudinal  measurements  include  normal  force,  axial  force, 
and  pitching  moment,  while  lateral-directional  measurements  include  side  force,  rolling  moment,  and  yawing 
moment.  Control  surfaces  and  configuration  variables  such  as  wing  leading- or  trailing-edge  flaps  are  manu-
ally  set  at  prescribed  deflections,  and  the  angle  of  attack  and  angle  of  sideslip  during  the  conventional  static 
force  and  moment  tests  are  varied  over  a  large  range,  including  poststall  conditions.  The  test  engineer  exam-
ines  the  measurements  for  obvious  problems  and  trends,  such  as  aircraft  instabilities  or  sudden  deterioration 
in  control  effectiveness.  Candidate  solutions  for  the  problems  are  identified,  and  a  free-flight  program  is 
planned  with  these  issues  in  mind.  Certain  free-flight  configurations,  such  as  V/STOL  aircraft  designs,  are 
subject  to  large  power-induced  effects,  and  power-on  force  tests  are  mandatory  before  flight.  The  determina-
tion  of  power  effects  complicates  the  test  setup  and  scope  of  the  aerodynamic  test  program. 

The  large,  heavy  outdoor  drop  models  used  by  NASA  for  spin  entry  testing  are  usually  not  subjected  to 
preflight  tunnel  testing  because  of  unacceptable  delays  in  the  flight  schedule;  however,  a  few  models  have 
undergone  testing  to  determine  control  hinge  moments,  calibrate  air  data  systems,  or  provide  information  on 
other  operational  issues. 

In many instances, researchers have found that an abrupt onset of instabilities experienced in the free-
flight tests was not predicted  within the necessarily limited number of test conditions during the preflight 
static testing. On those occasions, additional wind tunnel entries were required to expand the aerodynamic 
database with additional test points at finer increments of angle of attack and sideslip. These experiences 
were particularly prevalent for investigations of high-angle-of-attack behavior near stall conditions. In rare 
instances, the flexible flight cable used in the model flight tests was found to create an unacceptable aero-
dynamic interference effect on stability of certain configurations. For example, in one case, the presence of 
the flight cable above the fuselage of an advanced fighter configuration severely degraded lateral stability 
because of interference effects of the cable’s pressure field with critical vortical flow on the upper fuselage. 
Additional static testing was conducted to find an acceptable location for repositioning the cable. Typically, 
the solution consisted of bringing the flight cable high-pressure air tubes and control cables into the model 
from its underside while maintaining the upper surface location of the steel safety cable. In some cases, the 
foregoing static wind tunnel aerodynamic testing was integrated with flight tests over the duration of the 
study, with the static test conducted before, during, and after flight tests. 
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Forced-Oscillation Tests 

Analysis and prediction of aircraft dynamic stability and control requires knowledge of both static and 
dynamic aerodynamic phenomena. Dynamic aerodynamic  phenomena include an understanding of aero-
dynamic effects caused by motions such as angular rates in pitch, roll, and yaw. For most configurations, 
the most important dynamic parameters are the damping derivatives, which indicate the magnitude of aero-
dynamic resistance exhibited by the configuration during rotary motions. These parameters are of particular 
interest to the stability-and-control analyst, because aerodynamic damping can be either stable, retarding 
moments or unstable moments that augment the motion. 

A  typical  test  setup  for  forced-oscillation  tests  in  pitch  is  shown  for 
a  free-flight  model  of  the  F-15  in  the  Langley  14- by  22-Foot  Tun-
nel.  An  electric  motor  at  the  base  of  the  support  column  drives  a 
flywheel-pushrod-crank  assembly,  which  forces  the  model  and  its 
yoke-mounted  internal  strain-gauge  balance  to  oscillate  in  pitch  at  a 
specified  amplitude  and  frequency. 

The NACA  and NASA  developed a test 
technique known as forced-oscillation test-
ing, during which the model and its internal 
strain-gauge balance are mounted to special 
apparatuses that force the model to move in 
angular motions of specified frequency and 
amplitude.2  The electrical output of the bal-
ance during the oscillatory motions is routed 
to a special analyzer, which interrogates the 
return signal in terms of forces and moments 
in phase with the angular displacement of 
the model, and also in terms of forces and 
moments in phase with the angular rates of 
the model. These measurements are then 
converted to engineering values of aerody-
namic forces and moments about each air-
craft axis. For example, during a forced-
oscillation test in roll, parameters are 
measured for the rolling moment caused by 
rolling (roll damping), the yawing moment 
caused by rolling, and the side force caused 
by rolling. The reduced data are then ana-
lyzed for trends in dynamic  aerodynamic 
behavior, with special attention given to sud-
den changes in characteristics. Most aircraft 
configurations exhibit stable aerodynamic 
damping in roll during rolling motions at low 
angles of attack and attached flow condi-
tions. As the angle of attack is increased to 
conditions near stall, massive flow separa-
tion can occur on the wing, resulting in pro-
pelling, rather than damping, variations in 
damping in roll. Such trends may lead to 
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lightly damped or unstable roll oscillations at high angles of attack, requiring the use of artificial stabilization 
typically provided by roll-rate sensors and control system logic. An early detection of problems requiring 
control system architecture changes is valuable in early design development of advanced aircraft. 

Forced-oscillation  testing  has  been  a  common  element  in  wind  tunnel  free-flight  testing,  and  rigs  have  been 
developed  and  used  in  tests  of  free-flight  models  in  Langley’s  12-Foot  Low-Speed  Tunnel,  Full  Scale  Tunnel, 
and  14- by  22-Foot  Tunnel.  Nearly 
every  military  free-flight  model  at 
Langley  has  been  tested  using  the 
technique,  and  the  data  derived 
were  typically  incorporated  in  flight-
test  planning  for  the  full-scale  air-
craft,  including  the  aerodynamic  defi-
nition  of  the  configuration  used  in 
piloted  simulators.  The  dynamic  data 
have  also  been  used  for  the  calibra-
tion  of  computational  methods  for 
estimating  dynamic  derivatives.  In 
addition  to  the  low-speed  applica-
tions  typically  involved  in  flight 
dynamics  research  on  free-flight 
models,  Langley  has  developed 
high-speed  forced-oscillation  test 
rigs  to  permit  measurements  of 
dynamic  stability  derivatives  at  tran-
sonic  and  supersonic  speeds  with 
conventional  metal  models  in  the 
Langley  Transonic  Dynamics  Tun-
nel,  the  Langley  National  Transonic 
Facility,  and  the  Langley  Unitary 
Supersonic  Wind  Tunnel. 

For  forced-oscillation  tests  in  roll,  the  assembly  at  the  top  of  the  vertical  col-
umn  is  replaced  with  a  mechanism  that  permits  the  pushrod  motion  to  be 
converted  to  rolling  oscillations.  The  photograph  shows  a  free-flight  model  of 
the  F/A-18E  undergoing  roll  oscillation  testing  in  the  14- by  22-Foot  Tunnel. 
For  yawing  forced-oscillation  tests,  the  sting  is  reoriented  to  enter  the  model 
through  the  top  or  bottom. 

Free-to-Roll Tests 

As experience with free-flight models and corresponding full-scale aircraft was accumulated, researchers 
experimented with other approaches to identify potential roll damping issues, particularly for high-angle-of-
attack conditions. Many slender, swept wing configurations that exhibited large-amplitude, lightly damped 
roll oscillations in flight seemed to exhibit such motions about the longitudinal aircraft axis—that is, almost 
pure rolling motions. In an attempt to replicate the rolling motions, dynamic models were sting-mounted to 
a minimum-friction bearing assembly, which provided the model 360-degree freedom in roll at a specified 
angle of attack. The technique, known as “free to roll,” was calibrated by testing models that had exhibited 
roll oscillations in flight tests in the wind tunnel. One of the first models tested with a free-to-roll rig was the 
F-4 fighter that, as discussed, exhibited large-amplitude wing-rocking motions at high angles of attack. 
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Schematic  of  a  typical  test  setup  for  free-to-roll  tests.  The  model  is  mounted  to  a  special  bearing-equipped  apparatus  that 
permits  360  degrees  of  freedom  in  roll.  A  brake  is  provided  to  lock  the  roll  attitude  if  desired. 

Results of the free-to-roll tests showed good correlation with the F-4 free-flight tests. Comparison of free-to-
roll  results  with  measurements  of  roll  damping  obtained  from  forced-oscillation  roll  tests  for  the  F-4  model 
indicated  that  the  free-to-roll  trends  followed  the  roll-damping  measurements,  thereby  providing  guidance  for 
analyses  of  aerodynamic  phenomena.  The  most  significant  advantage  of  the  free-to-roll  testing  technique  was 
that  it  offered  the  potential  for  a  test  setup  in  which  the  roll  degree  of  freedom  could  be  constrained,  thereby 
permitting  the  test  apparatus  to  be  used  for  conventional  testing.  In  this  manner,  free-to-roll  characteristics 
might  be  obtained  during  a  single  tunnel  entry  that  combined  static  and  dynamic  roll  testing.  At  the  same  time, 
the  testing  could  be  conducted  without  the  complications  of  installing  forced  oscillation  equipment  and  the 
associated  impact  on  the  wind  tunnel  schedule. 

Over  the  years,  about  50  military  and  civil  aircraft  configurations  and  space  vehicles  have  been  tested  at 
subsonic  flight  conditions  using  the  free-to-roll  technique,  including  specific  and  generic  configurations.  After 
decades  of  application,  the  technique  has  proven  to  be  a  reliable  indicator  of  degraded  or  unstable  roll  damp-
ing.  Using  the  technique,  researchers  have  been  able  to  identify  aerodynamic  mechanisms  that  caused  the 
degraded  characteristics  and  evaluate  the  effectiveness  of  configuration  modifications  designed  to  eliminate 
or  minimize  the  problem.  Many  of  these  evaluation  studies  have  resulted  in  surprising  conclusions.  In  particu-
lar,  the  strong  vortex  flows  produced  by  chined  fuselage  forebodies  have  played  a  critical  role  in  the  degrada-
tion  of  roll  damping  at  high  angles  of  attack  for  some  fighter  configurations.3  In  addition  to  its  experimental 
value,  the  free-to-roll  testing  technique  has  resulted  in  worldwide  studies  to  develop  analytical  and  computa-
tional  methods  to  predict  the  rolling  motions  based  on  the  geometry  of  the  configuration  of  interest. 
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During the development of the F/A-18E/F aircraft, an abrupt uncommanded roll-off was experienced by 
flight-test aircraft at transonic speeds. After the configuration was modified and entered production, NASA  
participated in a joint program with the Navy and Boeing to advance the state of the art in experimental and 
computational methods for prediction of abrupt wing stall phenomena at transonic conditions.4  As part of the 
effort, NASA  developed a transonic rig for the Langley 16-Foot Transonic Tunnel and applied the free-to-roll 
technique to four configurations: the F-16C, the F/A-18C, the F/A-18E preproduction aircraft, and the 
AV-8B.5  The  first  two  configurations  are  known  to  not  exhibit  wing  drop  or  wing  rock,  but  the  last  two  exhibited 
severe  wing  drop  transonically.  In  tests  of  all  four  configurations,  good  correlation  was  obtained  with  full-scale 
flight  tests.  The transonic free-to-roll test capability was subsequently used for joint NASA–Lockheed Martin 
evaluations of the F-35 configuration, with great success.6  As a result of this test and other associated tun-
nel tests, the wing configuration of the F-35C for the Navy was modified to eliminate wing-drop tendencies. 

The  free-to-roll  technique  has  been  adapted  for  high-speed,  high  Reynolds  number  testing  in  the  Langley 
Transonic  Dynamics  Tunnel,  the  Langley  National  Transonic  Facility,  and  the  Calspan  Transonic  Wind  Tunnel. 

Rotary-Balance Tests 

The  latest  rotary-balance  test  apparatus  in  the  Lang-
ley  Spin  Tunnel  permits  roll  oscillations  to  be  super-
imposed  on  the  steady  spinning  motion. 

In addition to free-spinning tests, the Spin Tunnel is 
equipped with an apparatus that permits measurements 
of six-component aerodynamic data during simulated 
spinning motions. Mounted to an electronic strain-gauge 
balance, the model is forced to spin about a vertical or 
inclined axis relative to the tunnel airstream at specified 
rates. Data extracted from the tests are used in analytical 
predictions of spin characteristics and for assessing the 
impact of configuration modifications. In general, scaled 
free-spinning models used in the Langley 20-Foot Spin 
Tunnel are too small to accommodate force and moment 
balances. In addition, the requirements to provide timely 
information on spin recovery characteristics for a large 
number of possible mass loadings have historically been 
higher priorities than interest in acquiring aerodynamic 
spin data with the models for most test programs. Instead, 
separate larger-scale models are constructed for testing 
on the tunnel rotary-balance test apparatus. The rotary-
balance testing technique has been considerably updated 
and made more capable for the past 30 years. As 
expected, the primary interest in aerodynamic  rotary test-
ing is to provide data for the analysis of spin recovery 
characteristics using analytical motion calculations. In 
addition, the technique provides detailed data on the 
effect of configuration variables on aerodynamic param-
eters during simulated spinning motions. For example, 
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the effect of raising a horizontal tail from a low position to a T-tail location on spin damping can be readily 
measured and analyzed. In recent years, the rotary-balance models have become more sophisticated, 
including the implementation of pressure ports for measurements of pressures on wings, fuselages, and 
tails during spins.7 

New developments in rotary testing at Langley include a rig that permits computer-controlled oscillatory 
motion superimposed on the steady spinning motions. A  far cry from the archaic testing conducted in the 
5-Foot Vertical Tunnel in the 1920s, this test rig provides unprecedented analysis capability for studies of 
the spin and recovery. 

Free-to-Pitch Tests 

Another unique  test technique developed by NASA  in the 12-Foot Low-Speed Tunnel and the Spin Tunnel 
to assess aerodynamic and dynamic behavior at extreme angles of attack is known as the free-to-pitch test. 
The technique was first stimulated by concern over deep stall and tumbling characteristics exhibited by fly-
ing wing and statically unstable configurations in the 1940s. As discussed in the previous section for X-29 
tests, the test setup for free-to-pitch testing consists of mounting the model in a yoke-type apparatus, which 
permits a single degree of freedom in pitch with 360 degrees of rotational freedom. The yoke is placed in 
the vertical airstream of the Spin Tunnel, with the model attitude fixed at a prescribed value using an  
artificial restraint, and the model is then released and the ensuing motions observed and recorded. 

Aerodynamic controls can be deflected by remote control, and the ability to terminate the tumbling motions 
with various combinations of control inputs can be determined. Using the technique with the model initially 
at extreme poststall angles of attack, researchers can evaluate whether the configuration shows suscepti-
bility to stabilizing in an unrecoverable deep stall, or whether 360-degree tumbling motions will be induced 
during the recovery to conventional flight. 
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FUTURE PERSPECTIVES 

Over  80  years  of  conceptual  studies,  developmental  efforts,  and  applications  of  free-flying  dynamic  model 
test  techniques  by  the  NACA  and  NASA  have  provided  the  aerospace  community  with  a  rich  legacy  of 

advances  in  the  state  of  the  art  of  flight  dynamics.  The  ability  to  predict  the  behavior  of  full-scale  vehicles  for 
complex  flight  conditions  has  proven  an  ongoing  challenge  that  has  led  to  many  technical  issues  that  were 
subsequently  met  and  eliminated.  The  role  of  dynamic  models  has  been  especially  valuable  in  applications 
to  the  Nation’s  military  and  civil  aerospace  vehicles  that  were  unconventional.  As  would  be  expected,  many 
lessons  have  been  learned  regarding  the  cost-effective  applications  of  the  testing  techniques  and  the  
technical  limitations  of  free-flight  models.  With  so  much  success  in  the  rearview  mirror,  a  personal  perspec-
tive  on  the  future  opportunities  and  challenges  to  the  testing  techniques  might  be  of  interest  to  the  reader. 

It is appropriate to begin with an awareness of technical factors that influence the use of free-flight models 
for research and development. The accelerated development of remotely piloted unmanned aerial vehicles 
(UAVs) by the military has led to daily operations of sophisticated long-range vehicles and the attendant 
technologies required to develop, control, and maintain them. At the same time, a new breed of pilot has 
become adapted to the remote control and mission demands of the digital age asset. In comparison to 
today’s capabilities, NASA’s pioneering efforts seem almost primitive, but the Agency takes pride in its con-
tributions, which formed a solid base for the capabilities now used so successfully by the military and indus-
try. It is difficult to anticipate  hardware breakthroughs in free-flight model technologies beyond those in 
evidence, but NASA’s most valuable contributions have come from the applications of the models to spe-
cific aerospace issues—especially those that require years of difficult research and dedication. 

It is also appropriate to observe world scenarios that are having an impact on the role of dynamically 
scaled models for research within NASA. Foremost among these factors is the dramatic decrease in world-
wide research and development on radical military and civil aircraft since the mid-1990s. The end of the 
Cold War, megamergers in the aerospace industry, and the demise of funding for aeronautical research 
have led to a sharp reduction in research activities for unconventional vehicles. The development times 
required for new military aircraft has grown to decades, and the slowdown in requirements for the  
ongoing NASA  capabilities  in  free-flight  testing  is  a  great  concern.  Adding  to  these  concerns  are  the 
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constrains implemented after the events of September 11, 2001, including those concerning the ability to fly 
large remotely piloted vehicles in U.S. airspace. Strict airspace control by regulatory security directives can 
have (and are having) an impact on some free-flight research activities, resulting in delays in model flight 
opportunities. Finally, planned closures of key NASA  facilities will challenge new generations of researchers 
to reinvent the free-flight capabilities discussed herein. For example, the planned demolition of the Langley 
Full-Scale Tunnel after its September 2009 closure will terminate that historic facility’s role in providing test-
ing capability, although exploratory free-flight tests have been conducted in the smaller test section of the 
Langley 14- by 22-Foot Subsonic Tunnel. Based on the foregoing observations, NASA  will be challenged to 
provide the facilities and expertise required to continue to provide the Nation with contributions from  
free-flight models. 

Without doubt, the most important technical issue in the application of dynamically scaled free-flight mod-
els is the effect of Reynolds number. As discussed in previous sections, the anticipation and interpretation 
of scale effects will continue to be a challenge. The British Royal Aircraft Establishment (R.A.E.) had 
attacked the issue with the design and construction of a 15-foot pressurized spin tunnel by the National 
Aeronautical Establishment at Bedford, England, in the early 1950s. The approach was to provide the capa-
bility of pressurizing the tunnel to 4 atmospheres for increased Reynolds number.1  Tests were to be con-
ducted under pressurized conditions with the test crew removed from the tunnel for safety, and a periscope 
would have been used to observe the model. Launching and retrieving the model would be accomplished 
by means of a nylon cord attached to the model. Tests were conducted and completed with a 0.13-scale 
model of the tunnel to check out the design, but a fire destroyed the 15-foot pressurized spin tunnel soon 
after it was completed in 1954. To the author’s knowledge, no other pressurized tunnel has been con-
structed for high-Reynolds-number capability for spin research. 

In the author’s opinion, the research community should seriously examine the possibilities of combining 
current capabilities in cryogenic wind tunnel technology, magnetic suspension systems, and other relevant 
fields in a feasibility study of free-spinning tests at full-scale values of Reynolds number. The obvious issues 
of cost, operational efficiencies, and value added versus today’s testing would be critical factors in the 
study, although one would hope that the operational experiences gained in the U.S. and Europe with cryo-
genic tunnels in recent years might provide optimism for success. 

In lieu of a feasible facility for full-scale spin simulation, other approaches might involve the application of 
computational fluid dynamics  (CFD). In the 1990s, the surge of interest in emerging CFD methods resulted 
in a proposed joint NASA  Langley–R.A.E. Bedford effort to evaluate the ability of CFD to predict Reynolds 
number effects for spinning bodies, such as those experienced in the XF8U-1 program mentioned earlier. 
The objective was of special interest in the U.S., because  many wind tunnels were being closed and dis-
mantled, including the Ames 12-foot pressure tunnel. Langley and Ames had conducted investigations of 
fuselage-induced Reynolds number effects and determined the need for corrective strakes for spin models. 
The approach used for the proposed joint study was to computationally replicate experimental data that had 
been generated by Edward C. Polhamus and others on Reynolds number effects of cross-sectional shapes 
and to use the CFL3D NASA  code to compute rotary-type data for shapes that would be fabricated and 
tested on a rotary rig at Bedford. Unfortunately, the program  was canceled before meaningful results could 
be obtained. 
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In the decade since the aborted plan, interactions between the CFD and the stability and control (S&C) 
communities have been limited, to the point where the CFD specialists are not aware of the needs of the 
S&C specialists, and the S&C specialists believe that CFD has been oversold as a replacement for wind 
tunnels. In recent years, a NASA  effort was made (later aborted) to bring the groups together in a NASA– 
DOD–industry–academia program to be known as Computational Methods for Stability and Control  
(COMSAC).2  One of the major thrusts of the program was to be the use of CFD to predict Reynolds number 
effects for low-Reynolds-number tests. Once again, this proposed project was canceled at an early stage, 
and no significant progress was made toward the Reynolds number issue. However, COMSAC-related 
research of a more limited scope has been carried forward into both the NASA  Aviation Safety and Sub-
sonic Fixed Wing programs. 

In summary, the next major breakthroughs in dynamic free-flight model technology should come in the 
area of improving the prediction of Reynolds number effects. However, to make advances toward this goal 
will require a continued commitment, similar to the ones made during the past 80 years for the continued 
support of model testing in the areas discussed herein. 

CHAPTER 9: FUTURE PERSPECTIVES 
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